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Abstract 

The purpose of this dissertation is to examine aspects of the representational and 

computational influences on Bayesian reasoning as they relate to reference dependence.  Across 

three studies, I explored how dependence on the initial problem structure influences the ability to 

solve Bayesian reasoning tasks.  Congruence between the problem and question of interest, 

response errors, and individual differences in numerical abilities was assessed.  The most 

consistent and surprising finding in all three experiments was that people were much more likely 

to utilize the superordinate value as part of their solution rather than the anticipated reference 

class values.  This resulted in a weakened effect of congruence, with relatively low accuracy 

even in congruent conditions, as well as a different pattern of response errors than what was 

anticipated.  There was consistent and strong evidence of a value selection bias in that incorrect 

responses almost always conformed to values that were provided in the problem rather than 

errors related to computation. The one notable exception occurred when no organizing 

information was available in the problem, other than the instruction to consider a sample of the 

same size as that in the problem.  In that case, participants were most apt to sum all of the subsets 

of the sample to yield the size of the original sample (N). In all three experiments, higher 

numerical skills were generally associated with higher accuracy, whether calculations were 

required or not. 
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Reference Dependence in Bayesian Reasoning 

 Diagnostic tests are used in many domains to help distinguish who has or does not have a 

condition of interest.  However, these tests are not perfect, so a positive test result does not 

always correspond to the presence of a condition.  From an individual’s standpoint, knowing the 

likelihood that a positive test result indicates the presence of a condition is an important piece of 

information that would be helpful to know.  This is the positive predictive value (PPV) of the 

test, which compares the subset of those who have the condition and test positive (C+T+) to all 

of those who test positive (T+). 

 These types of tests are commonly presented as Bayesian reasoning problems, which are 

used to evaluate the ability to update prior beliefs based on additional evidence in order to 

determine a posterior probability.  Research over the last 40 years demonstrates that uninitiated 

reasoners, as well as novice reasoners, tend to have difficulty working through these types of 

problems to correctly determine the PPV (e.g., Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, 

& Woloshin, 2007; Gigerenzer & Hoffrage, 1995; Hoffrage, Krauss, Martignon, & Gigerenzer, 

2015; Johnson & Tubau, 2015; Reyna & Brainerd, 2008; Sirota, Kostovičová, & Vallée-

Tourangeau, 2015).   

Factors that have been associated with the low accuracy rates observed in Bayesian 

reasoning tasks are broadly categorized as representational or computational difficulties (Johnson 

& Tubau, 2015; Talboy & Schneider, 2018a, 2018b).  Difficulties with how the problem is 

cognitively represented by reasoners are typically attributed to how the components of the 

problem relate to each other, which is not readily apparent in some formulations of the problem.  
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Although many researchers have attempted various manipulations to encourage reasoners to be 

aware of and understand the nested structure of the problem, accuracy still falls short and is not 

consistent across manipulations (Brase, 2014; Garcia-Retamero, Cokely, & Hoffrage, 2015; 

Sirota, Kostovičová, & Juanchich, 2014; Sirota et al., 2015).  This representational issue is 

compounded by the computational difficulties of extracting and computing the value needed to 

determine the PPV from the information provided in the problem (Cosmides & Tooby, 1996; 

Gigerenzer & Hoffrage, 1995; Macchi, 2000).  The computational difficulties are especially 

apparent for those who struggle with numerical concepts compared to those who have stronger 

numerical skills (Chapman & Liu, 2009; Reyna & Brainerd, 2008; Schwartz, Woloshin, Black, 

& Welch, 1997; Talboy & Schneider, 2018b). 

 I propose that many of the representational and computational difficulties associated with 

Bayesian reasoning tasks are due in part to reference dependence, or the tendency to adopt a 

given or implied reference point at the start of cognitive deliberations.  The contextual 

structuring provided by the problem description gives uninitiated reasoners a starting point from 

which to evaluate the values in order to work toward a solution.  Across a variety of different 

types of problem solving, research suggests that inexperienced reasoners will often rely on the 

problem structure and organization to guide their approach to solution (Chi, Glaser, & Rees, 

1981; Talboy & Schneider, 2018a).  Relying on that structure can be problematic when the 

structure presents information in a way that is not consistent with the question being asked.  I 

propose that this reference dependence is a major factor in the solutions that reasoners generate 

when trying to solve Bayesian reasoning problems.   

The purpose of this dissertation is to examine aspects of the representational and 

computational influences on Bayesian reasoning as they relate to reference dependence.  Across 
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three studies, I explored how dependence on the initial problem structure influences the ability to 

solve Bayesian reasoning tasks.  I also evaluated the interplay of adopting a specified reference 

point when other representational and computational factors are manipulated.  Finally, I looked 

at how individual differences in numerical skill connect to these larger issues. 

Bayesian Reasoning Problems 

Bayesian reasoning problems are used to assess one’s ability to determine the likelihood 

of having a condition given a positive test result.  Reasoners are often asked to determine this 

positive predictive value (PPV) based on three pieces of information: the base rate of the 

condition within a given population or sample, the true positive rate (indicating those who have 

the condition and test positive), and the false positive rate (indicating those who do not have the 

condition but test positive).   

One of the first formulations of Bayesian reasoning problems was presented using single-

event probabilities for each of the numeric values, which indicates the chance of some event 

happening without specifying a particular reference class.  In this numeric format, the PPV is 

calculated as a conditional probability using Bayes Theorem.  Accuracy was generally very poor 

(around 15%), with the highest reported accuracy around 30% in the absence of training or other 

aids (e.g., Casscells, Schoenberger, & Graboys, 1978; Cosmides & Tooby, 1996; Eddy, 1982; 

Galesic et al., 2009; Gigerenzer & Hoffrage, 1995; Sirota, Juanchich, & Hagmayer, 2014; 

Sloman, Over, Slovak, & Stibel, 2003).   

One of the largest breakthroughs in improving Bayesian reasoning has come through 

representing the numeric information as natural frequencies instead of single-event probabilities 

(e.g., Garcia-Retamero & Hoffrage, 2013; Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, & 

Woloshin, 2007; Gigerenzer & Hoffrage, 1995).  Natural frequencies provide counts of 
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occurrences, indicating the total number of events in relation to a reference class of a specified 

size, as demonstrated using the classic mammography problem, shown below:   

10 out of every 1,000 women at age forty who participate in routine screening 

have breast cancer. 8 of every 10 women with breast cancer will get a positive 

mammography. 95 out of every 990 women without breast cancer will also get a 

positive mammography. 

Q: Here is a new representative sample of women at age forty who got a positive 

mammography in routine screening. How many of these women do you expect to 

actually have breast cancer? ___ out of ___ 

In each statement, the target subgroup is defined in relation to a specified reference class using 

integer values.  In this format, the PPV is calculated as a joint probability using a simplified form 

of Bayes Theorem rather than the more difficult conditional probability algorithm (Gigerenzer & 

Hoffrage, 1995). 

When Bayesian reasoning problems are presented in this manner, around 40% of 

participants typically determine the correct solution in the absence of training (e.g., Brase, 2014; 

Gigerenzer & Hoffrage, 1995; Micallef, Dragicevic, Fekete, & Assessing, 2012; Sirota et al., 

2014).  Despite this dramatic improvement with natural frequencies, though, well over half of 

participants across studies still struggle to determine the correct solution to Bayesian reasoning 

problems.  Many of the remaining difficulties associated with this task can be categorized as 

representational issues and computational issues (Johnson & Tubau, 2015). 

Representation 

One of the biggest difficulties associated with correctly determining the solution for 

Bayesian reasoning problems is identifying the correct reference class for PPV.  To do this 
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requires understanding the nested structure of the problem as well as the subset-set relationships 

between the components of the problem (e.g., Barbey & Sloman, 2007; Brase & Hill, 2017; 

Girotto & Pighin, 2015; Sirota, Juanchich, et al., 2014).  To demonstrate, Table 1 shows how the 

nested values of a traditional Bayesian reasoning problem are organized using a contingency 

table.  The sections presented with no shading indicate which values are typically included in 

traditional presentations, such as the subset of those who test positive and have the condition 

(C+T+) and the subset of those who do not have the condition and test positive (C-T+).  The 

grayed boxes indicate values that could be elucidated but are often not, such as the 

complementary subsets of those who test negative (C+T- and C-T-).  The most critical of these 

for PPV is the total of those who test positive (T+).  This value is needed to determine the 

reference class or denominator for the PPV. 

Table 1. Bayesian Reasoning Task Values Organized in a 2x2 Contingency Table 

 TEST POSITIVE TEST NEGATIVE 
Marginal 

Totals 

CONDITION 

POSITIVE 

Condition Positive and 

Test Positive (C+T+) 

Condition Positive and 

Test Negative (C+T-) 

Total Condition 

Positive (C+) 

CONDITION 

NEGATIVE 

Condition Negative and 

Test Positive (C-T+) 

Condition Negative and 

Test Negative (C-T+) 

Total Condition 

Negative (C-) 

Marginal 

Totals 
Total Test Positive (T+) Total Test Negative (T-) 

Superordinate 

Set (N) 

 

Some researchers have created external aids, such as icon arrays or mosaic plots that 

visually demonstrate the nested relationship of all four subsets (e.g., Brase, 2014; Garcia-

Retamero & Hoffrage, 2013; Sirota, Kostovičová, & Juanchich, 2014).  Others have designed 

elaborate training programs that teach reasoners how to represent the nested structure and the set-

subset relationships (Kurzenhäuser & Hoffrage, 2002; Navarrete & Mandel, 2016; Sedlmeier & 
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Gigerenzer, 2001; Talboy & Schneider, 2017).  However, these types of interventions have had 

limited success (see Brust-Renck, Royer, & Reyna, 2013; Gaissmaier et al., 2012) and are often 

not available in the applied situations where Bayesian reasoning problems are typically 

encountered. 

In these applied situations, it may be more practical to manipulate the information that is 

presented within the problem itself instead of relying on an external aid to elucidate the nested 

components of the problem.  As shown above, the verbal presentations do not include all of the 

entries relevant to the diagnostic test.  It has been widely demonstrated that untrained reasoners 

tend to create mental representations of a problem based, often exclusively, on the information 

that is provided within the problem (Johnson-Laird, 1994; Kintsch & Greeno, 1985; Sirota, 

Juanchich, et al., 2014).   

In the case of Bayesian reasoning problems presented in the standard format, this 

suggests that reasoners are likely to encode only the subset information that is provided in the 

problem text rather than all possible subsets.  Because of this, they may not even recognize the 

nested set structure inherent in the problem.  By providing a verbal presentation that includes all 

of the component parts of the contingency matrix, reasoners may be more likely to develop a 

more complete mental model of the problem that helps them understand and manipulate values 

within the nested structure to determine the correct solution. 

Experiment 1 was designed to test whether providing complete subset information will 

facilitate the appropriate representation of the problems.  This manipulation also provides a 

baseline for comparison for manipulations introduced in Experiments 2 and 3.  In order to get 

uninitiated reasoners to appreciate the structure of the problem, I created a problem formulation 

that includes all four possible (conjoint) subsets to verbally fill all four cells of the nested 
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structure to move closer to what is accomplished by visual aids or training.  By expanding the 

amount of information available in the problem text, reasoners may be in a better position to 

recognize the structure of the problem and build a more complete mental model, which may in 

turn increase ability to correctly identify the PPV. 

Computation  

Although the inclusion of full subset information may improve the mental model 

reasoners create based on the problem presentation, this does little to address the computational 

difficulties associated with combining values to determine the correct marginal reference class 

needed for the PPV question.  Responses to the PPV question may be elicited as a pair of 

integers (i.e., ___ out of ___ people) wherein the numerator is the subset of interest (C+T+) and 

the denominator is the total reference class (T+) to which the subset is compared.  This is 

referred to as a frequency response format, which requires a single calculation (addition) to 

determine the denominator.  Alternatively, responses may be elicited as a percentage value (i.e., 

___%) wherein the two values needed for the frequency response format are combined through 

division.  This is referred to as a percentage response format. 

Although some argue that these computations are simple because they involve basic 

arithmetic operations like adding or dividing (Johnson-Laird, Legrenzi, Girotto, Legrenzi, & 

Caverni, 1999; Sloman et al., 2003), there is substantial evidence that many reasoners are unable 

to complete the computations required to correctly solve Bayesian reasoning problems (Johnson 

& Tubau, 2015; Mayer, 2003; Reyna & Brainerd, 2008; cf. Talboy & Schneider, in progress).  

Often, reasoners tend to select values directly from the problem as their denominator for the 

frequency response format instead of calculating the value needed (Cosmides & Tooby, 1996; 
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Galesic et al., 2009; Gigerenzer & Hoffrage, 1995; Gigerenzer, Hoffrage, & Kleinbölting, 1991; 

Talboy & Schneider, 2017, 2018a; Wolfe, Fisher, & Reyna, 2013). 

There are two potential explanations for this particular component response error.  First, 

reasoners may be dependent on how the problem information is structured, which leads them to 

utilize the reference class totals that are focused on in the problem, even when they are not 

appropriate for reaching the solution.  Alternatively, reasoners may have a general bias toward 

selecting values from the problem for their solution or for assuming that their task is to find the 

needed value from within the problem.  Both of these possibilities are also consistent with a bias 

toward cognitive ease (Kahneman, 2011), which favors a readily available answer over even 

seemingly innocuous arithmetic steps such as adding two values together.  As Ayal and Beyth-

Marom (2014) have shown, accurate performance in solving probability-based reasoning 

problems drops off dramatically as the need for computations increases.   

There is more to computation than just the arithmetic required to add or divide two 

integer values.  In problem solving, computation involves the cognitive processes of 

conceptualizing what is needed for solution, selecting relevant values from the problem, and 

applying the appropriate values toward solution.  Only then does the ability to perform the 

correct arithmetic step enter into consideration.  Computation in this sense involves a preexisting 

body of knowledge to enable recognition of which mathematical operation is appropriate for the 

question being asked.  It also involves analytic abilities to correctly interpret the meaning of the 

provided numbers within the context of the problem in addition to figuring out where to include 

the values in the operation itself before actually completing the arithmetic step.  Errors at any 

point during this process can contribute to incorrect computations, and as a result, incorrect 

solutions (Talboy & Schneider, 2018a).   
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Difficulties with computations are especially apparent for those with low numeracy 

compared to those with higher numeracy (Chapman & Liu, 2009; Reyna & Brainerd, 2008; 

Schwartz et al., 1997; Talboy & Schneider, 2017, 2018b).  Numeracy is the ability to work with 

and understand numbers in various numeric formats (Peters et al., 2006; Peters, Hibbard, Slovic, 

& Dieckmann, 2007).  Those who experience more difficulty working with numeric information 

tend to perform worse on reasoning tasks than those who have higher numeracy (Garcia-

Retamero & Galesic, 2010; Hill & Brase, 2012; Johnson & Tubau, 2013; Lipkus, Samsa, & 

Rimer, 2001; Peters et al., 2006; Schwartz, Woloshin, & Welch, 2005).   

Experiment 2 was designed to separate out the extent to which reasoners utilize numeric 

values as they are presented in the problem text versus completing necessary computations to 

determine the correct solution.  I created problem formulations that do not require computation 

of the denominator to determine the correct response to compare to problems that do require 

computation.  Comparing accuracy on these two problem formulations will help determine 

whether reasoners are more likely to select an inappropriate value from the problem to apply as 

the denominator in the solution, or whether they can be encouraged to complete computations to 

determine the correct denominator.  For each problem formulation, I will also look at the role of 

numeracy in relation to accuracy. 

Reference Dependence 

A major proposition of this work is that many of the problems associated with the 

representation and computational components of Bayesian problem solving are tied to the 

cognitive process of reference dependence.  Reference dependence is the tendency to start 

cognitive deliberations from a given or indicated reference point.  Representational and 

computational difficulties are compounded when the problem starts from one reference point and 
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the question asks reasoners to assess the information from another reference point (Johnson & 

Tubau, 2013; Pighin, Tentori, Savadori, & Girotto, 2018; Talboy & Schneider, 2018a, 2018b). 

In particular, the traditional Bayesian reasoning problem presents information within a 

condition nesting (C+ and C-), which provides a framework in which reasoners can organize the 

subset information.  However, they are standardly asked to evaluate the PPV of the problem, 

which asks reasoners to evaluate the subset of interest within a test nesting (T+).  Therefore, the 

most common presentation of Bayesian reasoning problems partitions the nested sets in a way 

that is not congruent with the posterior likelihood of interest (Girotto & Gonzalez, 2001; Pighin 

et al., 2018; Talboy & Schneider, 2017, 2018a, 2018b).   

To determine the correct solution, reasoners must ignore the reference class totals that are 

the focus in the problem in order to calculate the marginal reference class total of all those who 

test positive (T+).  The presence of a competing reference class total in the problem may cause a 

type of processing interference (e.g., Reyna, 2004; Reyna & Brainerd, 2008), which inhibits the 

reasoner’s ability to evaluate the problem from the alternate reference point.   

Reference dependence is one of the most ubiquitous findings throughout the judgment 

and decision making literature.  A wealth of research indicates that decisions are highly 

dependent on the reference frame used to present choices (e.g., Dinner, Johnson, Goldstein, & 

Liu, 2011; Hájek, 2007; Lopes & Oden, 1999; Tversky & Kahneman, 1991), and that many 

decision heuristics, such as default and anchoring effects, as well as framing effects can be 

explained by reference dependence.  Although the majority of research documenting reference 

dependence comes from the choice literature, the importance of context in shaping behavior has 

also been noted in several other domains, including logical reasoning (Johnson-Laird, 2010), 
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problem solving (Kotovsky & Simon, 1990), extensional reasoning (Fox & Levav, 2004)—and 

now in Bayesian reasoning as well (Talboy & Schneider, 2018a, 2018b). 

In particular, reasoners will often use the reference class that is the focus of the problem 

description as a part of their solution instead of calculating the correct reference class needed for 

solution.  As a result, responses often correspond to the sensitivity of the test (C+T+/C+) instead 

of the PPV (C+T+/T+; Cosmides & Tooby, 1996; Galesic et al., 2009; Gigerenzer & Hoffrage, 

1995; Gigerenzer, Hoffrage, & Kleinbölting, 1991; Talboy & Schneider, 2017, 2018a; Wolfe, 

Fisher, & Reyna, 2013).  In Talboy and Schneider (2018a), I found that about one-third of 

participants consistently indicated the sensitivity as their response, but also that another one-third 

of participants used the condition reference class as the subset of interest in relation to the 

superordinate set—another alternative reference class—as their response for the denominator on 

the frequency format question.   

This critical issue of using the incorrect reference class as part of the solution is often 

attributed to representational difficulties, and it may also reflect a bias to avoid computations.  

However, I further argue that both the representational and computational difficulty of 

identifying the correct reference class is compounded by the fact that reasoners must start 

evaluating the problem matrix from a different reference point than the one needed for solution. 

I refer to this traditional presentation of Bayesian reasoning problems as the “condition-

focus” presentation because the problem text explicitly uses the presence or absence of the 

condition as the reference class in which the subsets are organized and evaluated (Talboy & 

Schneider, 2018b, 2018a).  These problems can be reorganized to focus on the alternate set of 

reference classes, which indicate the total number of people who test positive (T+) or negative 

(T-), which includes the reference class that is needed to arrive at the PPV value.  I refer to this 



www.manaraa.com

12 

 

form as a “test-focus” presentation (Talboy & Schneider, 2018b, 2018a).  By changing the 

organization and focus of the problem, I am manipulating the reference structure that reasoners 

are likely to rely on to answer the PPV question.  These two problem forms are shown in Table 2 

using the mammography example. 

Table 2.  Example Presentations with Partial Subset Information for the Mammography Problem 

Condition-Focus (CF)   Test-Focus (TF) 

In this sample of 10,000 women, 100 have 

breast cancer. 

 

In this sample of 10,000 women, 1,070 

received a positive result on their 

mammogram.   

Of the 100 women who have breast cancer: 
Of the 1,070 women who received a positive 

result on their mammogram: 

     80 received a positive result 

     on their mammogram. 
     80 have breast cancer. 

   

Of the 9,900 women who do not have 

breast cancer: 
 Of the 8,930 women who received a negative 

result on their mammogram: 

     990 received a positive result 

     on their mammogram. 
      20 have breast cancer. 

   

Imagine another random sample of 10,000 

women who had a mammogram. 
 Imagine another random sample of 10,000 

women who had a mammogram. 

 

The traditional condition-focus problem presentation presents information in terms of 

who has or does not have the condition of interest (C+ and C-, respectively), with additional 

information about the subsets of testing positive or negative within the two primary reference 

classes.  This form of the problem is considered to be incongruent with the PPV question 

because each focuses on a different reference class than the T+ class needed for solution.  

Research has long called for a manipulation that constructively changes the way in which 

reasoners think about and conceptualize these types of problems to improve intuitive judgment 

and draw attention to the correct reference class (e.g., Bar-Hillel, 1980; Fischhoff & Bar-Hillel, 

1984; Girotto & Gonzalez, 2001; Hoffrage, Hafenbrädl, & Bouquet, 2015).   
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Talboy and Schneider (2018a, 2018b) attempted to draw attention to the correct reference 

class by changing how information was organized within the problem.  Instead of organizing the 

subsets of test results into the condition reference classes, I organized the subsets of the 

condition’s presence into the reference classes of those who test positive (T+) and those who test 

negative (T-).  This “test-focus” presentation is congruent with the PPV question as both utilize 

the same reference class information structure.  A congruent test-focus presentation paired with 

the PPV question (congruent) resulted in over 90% of participants routinely determining the 

correct solution without any aids compared to less than 30% determining the correct solution on 

the incongruent condition-focus problems paired with PPV questions (Talboy & Schneider, 

2018a, 2018b).  These findings demonstrate that when reasoners evaluate a problem that is 

organized to focus on the same information as the diagnostic question of interest, they are able to 

consistently identify the correct posterior likelihood of having the condition given a positive test. 

The benefit of using a congruent problem-question pairing is attributed to using reference 

dependence to ease the difficulties associated with both representation and computation of 

solutions (Talboy & Schneider, 2018a).  With a congruent pairing, the organization of the 

problem information maps directly to the question of interest.  Therefore, reasoners do not need 

to mentally re-structure the problem to get to the requested solution as they would with an 

incongruent problem-question pairing.  This also eliminates computational difficulties in the 

frequency format because the correct reference class total (i.e., needed denominator) is provided 

as a value that can be selected directly from the problem rather than a value that must be 

calculated from two component pieces that are split between the alternate set of reference 

classes.  Therefore, the requirements for solution on the congruent pairing were drastically 
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reduced compared to the more traditional incongruent pairing (e.g., Kotovsky & Simon, 1990; 

Simon, 1978).   

Across all three proposed experiments, I evaluated how reference dependence influences 

accuracy by using both congruent and incongruent problem-question pairings.  For each pairing, 

I assessed how representational and computational difficulties interplay with the effect of 

reference class congruence on problem solving, as well as explored the relationship between 

these effects with respect to error response patterns and numerical skill. 
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Current Research 

 In the three studies proposed here, I evaluated the extent to which reference dependence, 

as well as related representational and computational difficulties, affect accuracy in Bayesian 

reasoning.  Although each experiment is described separately, all conditions were randomly 

assigned simultaneously to enable cross-study comparisons.  Across all three proposed 

experiments, there is a shared set of general hypotheses, as well as aspects of the stimuli and 

materials that was common to all.  A map of the conditions across the three experiments is 

provided in Appendix A.   

General Hypotheses 

Bayesian reasoning problems were presented in either congruent or incongruent problem-

question pairings.  Congruent test-focus and PPV pairings utilize the same reference class 

information in both the problem and diagnostic question of interest, which makes the test-focus 

information problem formulation congruent with the PPV question (C+T+/T+).  Incongruent 

condition-focus and PPV pairings use different reference classes in the problem versus the 

question, which creates a mismatch between how information is presented and what is required 

to determine the solution.  Therefore, because condition-focus problem formulation focuses on 

the condition reference classes, it is incongruent with the PPV question that focuses on the test 

reference class.  Based on the power of reference dependence in the conceptualization of the 

problem, as confirmed in our previous research, I proposed the primary general hypothesis: 

H1) Congruence hypothesis: Congruent problem-question pairings will result 

in higher problem solving accuracy on average than incongruent pairings 
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because the same reference structure provided in the problem is required for 

solution.   

 In addition to evaluating reference dependence through the use of congruent and 

incongruent problem-question pairings, I also evaluated individual’s response patterns to 

determine which types of errors reasoners are making.  Error patterns observed in previous 

research suggests an identifiable pattern of responses that corresponds to values provided in the 

problem text rather than computational mistakes.  This led to the second general hypothesis: 

H2) Value selection bias hypothesis: Uninitiated reasoners will be more likely 

to select values as they are explicitly presented in the problem for their 

solution rather than completing computations to determine the correct 

response.  Therefore, the majority of errors in response patterns will 

conform to identifiable values from the problem. 

 Finally, I evaluated accuracy and response patterns on Bayesian reasoning tasks with 

regard to numerical skill.  I was specifically interested in those who have the most difficulty on 

these types of problems, which requires separating out those with the lowest numerical skillset 

from those who demonstrate higher numeracy.  This led to the third general hypothesis: 

H3) Numeracy hypothesis: In general, those with higher numeracy will 

display higher accuracy than those with low numeracy, especially for 

problems that require computations compared to problems without 

computations. 

Shared Stimuli and Measures 

Eight Bayesian reasoning problems were used to test participants’ abilities to understand 

and calculate the positive predictive value (PPV).  Table 3 includes the domain, topic, and 
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frequency versions of the base rate, true positive rate, and false positive rate for all eight 

problems.  I used two problems each from four unique content domains to ensure generalizability 

of results across various areas in which diagnostic tests could be encountered. 

Table 3.  Condition-focus Essential Components of Each Inference Problem 

      Base Rate 
True Positive 

Rate 

 False Positive 

Rate PPV SEN 

Domain    Topic C+ N (C+T+) | (C+)  (C-T+) | (C-) % % 

Medical Mammogram 100 10,000 80 | 100 990 | 9,900 8 80 

Medical Diabetes 50 10,000 48 | 50 4,975 | 9,950 1 96 

Legal Polygraph 50 1,000 47 | 50 47 | 950 37 83 

Legal Recidivism 156 1,000 130 | 156 220 | 844 50 94 

Sports Baseball 185 250 130 | 185 15 | 65 90 70 

Sports Tennis 2,800 10,000 2,000 | 2,800 1,100 | 7,200 65 71 

College Employment 140 200 70 | 140 10 | 60 88 50 

College Exam Prep 350 500 275 | 350 25 | 150 92 79 

Note. Base Rate = the number of condition occurrences (C+) within the specified sample size.  

(Test + | Act. +) = the number of people who test positive (correctly) out of the number of people 

who are actually positive.  (Test + | Act. -) = the number of people who test positive 

(erroneously) out of the number of people who are actually negative. 

All reasoning problems start with a general preamble about the condition of interest, as 

well as the test used for detecting the condition.  In each problem, the preamble emphasizes that 

the test is not always correct and that specific information regarding correct and incorrect results 

is provided in the remaining sections of the problem.  The rest of the problem information is 

manipulated to conform to either a test-focus or a condition-focus problem presentation, which is 

then matched with a congruent or incongruent diagnostic question.  An example of each problem 

form is provided in Appendix B. 

For each problem, participants determined the PPV first as a frequency response and then 

as a percentage response immediately after.  The frequency response format question asks, “Of 

the women from this new sample who test positive, how many do you expect to have breast 

cancer?”  For this format, answers were given as an open-response requiring the correct 

identification of two relevant integer values (___ out of ___ people) provided in the correct 
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order.  The accuracy score for the frequency format was computed by totaling the number of 

correct integer-pair answers across the eight problems.  Because minimal or no calculations were 

needed to give the correct frequency responses, only exact values were coded as correct.  Many 

of the hypotheses focus on the frequency response format as it provides a distinction between 

values that can be selected directly from the problem (i.e., the numerator) and values that require 

computations (i.e, the denominator). 

For the percentage answer format, responses were provided using a slider scale ranging 

from 0% to 100% to the question “If a woman from this new sample tests positive, what is the 

probability that she will have breast cancer?”  The accuracy score for the percentage format was 

assessed by totaling how many correct estimates are provided on the eight reasoning problems.  

Based on previous studies (Galesic et al., 2009; Hoffrage & Gigerenzer, 1998; Talboy & 

Schneider, 2017, 2018b, 2018a), responses on the percentage format are coded as correct if the 

answer falls within ±5% of the correct response.  This range allows for possible rounding errors 

that could be made during mental calculations as participants are only provided pencil and paper 

in lieu of calculators. 

Participants also completed a numeracy scale to assess their level of numerical skill.  

Researchers are often unable to make an overarching assessment of numeracy because current 

prevalent measures tend to focus on myopic components such as subjective impressions of 

personal numerical abilities (Fagerlin et al., 2007), specific computational skills (Cokely et al., 

2012), or understanding of numerical expressions of risk in the form of probabilities or 

percentages (Lipkus et al., 2001; Weller et al., 2012).  Additionally, results are often clouded by 

low reliability in the measure as some of the questions are clearly related to individual 

components of numeracy, whereas other map onto specific statistical literacy skills.   
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Although an ideal scale has yet to be developed, the Abbreviated Numeracy Scale (ANS; 

Weller et al., 2012) has been used in prior studies to distinguish those who have low numeracy 

from those who have higher numeracy (Talboy & Schneider, 2018a, 2018b).  Therefore, in the 

current studies, numeracy was measured using the ANS.   

Power Analysis 

The three proposed experiments were run contemporaneously, and participants were 

randomly assigned to one of 10 possible between-subjects conditions.  Power analysis conducted 

prior to data collection indicates that these experiments require a minimum of 40 participants per 

cell to find smaller main effects (𝜂2 = .06) with a power = .80 and α = .05, and medium-large 

simple effects (𝜂2 = .16; Cohen, 1992).  The determination of expected effect size was based on 

the effects found in previous research for congruence and numeracy (Talboy & Schneider, 

2018a, 2018b).  In total, 594 participants participated in these studies.  However, 5 participants 

were removed prior to analysis due to computer issues or incomplete response sets.  In total, 589 

participants (66% female) completed all study requirements and were included for analyses. 

Overview of Proposed Experiments 

  In Experiment 1, I evaluated how the amount of information provided in the problem 

description affects accuracy on Bayesian reasoning tasks.  I did this by manipulating the total 

number of subsets described explicitly in the problem.  By expanding the amount of information 

available in the problem text, reasoners may build a more elaborate mental model that better 

reflects the structure of the problem (Johnson-Laird, 1994; Kintsch & Greeno, 1985; Sirota, 

Juanchich, et al., 2014), which may in turn increase accuracy.  However, this might instead make 

discrimination of needed values more difficult. This experiment also established a baseline 
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measure for accuracy in problems with complete subset information, which is used for 

comparative purposes in Experiments 2. 

 In Experiment 2, I evaluated the role of computation in Bayesian reasoning.  In this 

study, measuring accuracy and individual differences in response patterns on incongruent 

problem-question pairings (i.e., condition-focused problem with PPV question; CF-PPV) allows 

the opportunity to evaluate issues related to both incongruent and congruent pairings.  First, I 

assessed the extent to which incongruent reference class totals introduce processing interference 

(e.g., Reyna, 2004) that inhibits uninitiated reasoners’ ability to determine the correct reference 

class.  I assessed individual response patterns to gauge the general bias toward selecting values 

directly from the problem for the solution rather than completing computations.   

For the congruent problem-question pairings (i.e., test-focused problem with PPV 

question; TF-PPV), I separated out the extent to which an added computation reduces the overall 

effect of congruence on accuracy.  Again, I assessed individual response patterns to evaluate the 

extent to which reasoners are biased toward selecting values from the problem rather than 

completing computations.  For both incongruent and congruent problem-question pairings, 

numerical skill was evaluated with respect to the selection and computation of values needed for 

the solution.   

In Experiment 3, I introduced a new manipulation of reference dependence to determine 

the extent to which reasoners rely on the reference structure provided in the verbal description of 

the problem to determine the solution.  In both the incongruent and congruent problem-question 

pairings, I looked at accuracy and individual differences in response patterns, as well as the 

relationship between numeracy and accuracy. 
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 Each experiment is described separately to allow for assessment of specific hypotheses 

within each experiment.  Running them contemporaneously, though, allowed for comparisons 

across experiments that further clarify the extent to which these three issues are related, and 

affect accuracy in Bayesian reasoning.  This research was approved by the University of South 

Florida’s Institutional Review Board, shown in Appendix C with a copy of the informed consent. 
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Experiment 1 – Amount of Information 

In each Bayesian reasoning problem, there are four unique subsets of interest (C+T+, 

C+T-, C-T+, C-T-).  Generally speaking, the research conducted on Bayesian reasoning tends to 

utilize problem forms that only present the two subsets that are needed to calculate the PPV 

(Brase, 2014; Gigerenzer & Hoffrage, 1995; Micallef et al., 2012; Sirota, Juanchich, et al., 2014; 

Talboy & Schneider, 2018a).  Within these condition-focused problems, the subset of those who 

test positive is provided within the context of having the condition (C+T+) or not having the 

condition (C-T+).  The pair of complementary subsets are not typically included. 

Findings are mixed regarding whether reasoners are aware that potentially important 

subset information is absent from problem presentations.  In some cases, people appear to be 

insensitive to information that is intentionally left out of problems (Fischhoff, Slovic, & 

Lichtenstein, 1978; Hammerton, 1973; McDowell & Jacobs, 2017; McDowell, Rebitschek, 

Gigerenzer, & Wegwarth, 2016).  In others, reasoners (when asked) may make simple 

assumptions about information that they believe should be present but is not (e.g., Hamm, Miller, 

& Drillings, 1988).  Uninitiated reasoners tend to rely on surface features provided in the 

problem to guide how they determine the solution (Chi, Feltovich, & Glaser, 1981; Chi, Glaser, 

et al., 1981; Owen & Sweller, 1989; Swanson & Beebe-Frankenberger, 2004; Winner, Engel, & 

Gardner, 1980).  Therefore, responses may conform to surface features made available in the 

problem whether this includes full or partial subset information. 

Adding full subset information may allow reasoners to create a more complete mental 

model of the problem structure by clarifying all of the component parts and implying the 
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interrelationships that make up the contingency matrix.  With partial presentations, half of the 

subsets are not explicitly delineated.  Research concerning mental models and conditional 

reasoning suggests that this type of implicit information may be encoded into the mental 

representation of the problem but in a way that is not immediately accessible for problem solving 

(Johnson-Laird, 1994) or it may be completely ignored (Fischhoff et al., 1978; Hammerton, 

1973; McDowell & Jacobs, 2017; McDowell et al., 2016).  As a result, reasoners tend to rely 

more on explicit information because those values are more readily accessible (Johnson-Laird, 

1994).  Given this, accuracy is expected to increase on problems with full subset compared to 

partial subset information (Girotto & Gonzalez, 2001; Johnson-Laird, 1994; Legrenzi & Girotto, 

1995; Markovits & Barrouillet, 2002).   

When the problem presents all of the component pieces, all of the information is 

explicitly available and thus readily accessible for creating a mental structure that can be 

manipulated to determine the solution.  By having all of the components available, reasoners do 

not need to mentally manage as many pieces of information because they are available in the 

problem description, making it less likely for reasoning errors to occur (e.g., Markovits & 

Barrouillet, 2002).  This led to the first hypothesis for amount of information: 

H4a) Mental models hypothesis: Complete problem information will result in 

higher problem solving accuracy than partial problem information because it 

will facilitate the reasoner’s development of a comprehensive mental model 

of the problem structure.   

However, there is a competing hypothesis for what happens when the amount of 

information is manipulated.  Instead of increasing accuracy, the inclusion of full subset 

information could decrease accuracy because reasoners will need to discriminate among more 
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values than they would with partial subset information.  In choice tasks, having several options 

can be overwhelming because the need to evaluate more information places a larger cognitive 

burden on reasoners (Greifeneder, Scheibehenne, & Kleber, 2010; Iyengar & Lepper, 2000; 

Johnson et al., 2012).  For instance, reasoners may not be able to actively attend to all of the 

options provided when full subset information is given compared to when partial subset 

information is given (Iyengar & Lepper, 2000).  Reasoners may also get confused about which 

pieces of information are necessary for solution when they must discriminate among a larger set 

of values that are all relevant to developing a deeper understanding of the interrelated problem 

structure but are not necessarily needed for solution.  This led to the competing hypothesis for 

amount of information: 

H4b) Discrimination hypothesis: Complete problem information will result in 

lower problem solving accuracy than partial problem information because 

reasoners will need to discriminate among a larger set of values. 

These two experiment-specific hypotheses will be evaluated in conjunction with 

the three overarching hypotheses (congruence, value selection bias, and numeracy). 

Method 

Participants.  Experiment 1 included 236 psychology undergraduates who participated 

in exchange for extra credit toward a course.  Each participant was randomly assigned to one of 

four between-subjects conditions. 

Design.  Experiment 1 used a 2 x 2 Congruence (congruent, incongruent) x Information 

(partial subsets, full subsets) between-subjects design.  The primary dependent variable was 

accuracy on the PPV question in the frequency response format (___ out of ___ people). 
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Bayesian reasoning problems were presented as either congruent or incongruent problem-

question pairings.  Congruent test-focus problems with PPV question pairings utilized the same 

reference class information to structure the problem and diagnostic question of interest.  

Incongruent condition-focus problems with PPV question pairings used different reference 

classes to structure the problem and question, which created a mismatch between how 

information was presented and what was required to determine the solution.   

 In typical Bayesian problem presentations, only partial subset information is provided (as 

shown in Table 2).  For the condition-focus information structure used in the current study, 

partial information included the base rate of a condition within a given population (C+ out of N), 

along with the subset who will have the condition and test positive (C+T+), and the subset who 

will not have the condition but also test positive (C-T+).  In this format, the two complementary 

subsets of those who test negative (when the condition is present or absent) were not provided.  

In the test-focus information structure, the base rate of testing positive within a random sample 

was given (T+ out of N).  Additional subset information was provided about who will test 

positive and have the condition (C+T+), as well as the subset who will test negative but also 

have the condition (C+T-).  The two complementary subsets of those who do not have the 

condition (and test positive or negative) were not provided. 

 When full information was given in the problem, all four subsets of those who have or do 

not have the condition and test positive or negative were clearly indicated within the appropriate 

reference class.  An example of the congruent and incongruent problem that includes full subset 

information is included in Table 4.   

The dependent variable was the number correct on the frequency response format for the 

eight Bayesian reasoning problems (range: 0-8 correct responses on both numerator and 
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denominator response components).  Participants also provided the PPV as a percentage value 

using a slider scale ranging from 0-100%.  To examine the relationship between numeracy and 

response accuracy, numerical abilities were measured using the 8-item Abbreviated Numeracy 

Scale (ANS; Weller et al., 2012).  The scale results in normally distributed scores and has 

demonstrated sufficient reliability and validity (Cronbach’s α = .71; Weller et al., 2013). 

Table 4.  Example Presentations with Full Subset Information for the Mammography Problem 

Incongruent Condition-Focus Problem – Full Subset Information 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 

In this sample of 10,000 women, 100 have breast cancer. 
 
Of the 100 women who have breast cancer: 

     80 received a positive result on their mammogram. 

     20 received a negative result on their mammogram. 
 

Of the 9,900 women who do not have breast cancer: 

     990 received a positive result on their mammogram. 

     8910 received a negative result on their mammogram. 
 

Imagine another random sample of 10,000 women who had a mammogram. 

Congruent Test-Focus Problem – Full Subset Information 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 

In this sample of 10,000 women, 1,070 received a positive result on their mammogram. 
 

Of the 1,070 women who received a positive result on their mammogram: 

     80 have breast cancer. 

     990 do not have breast cancer. 
 

Of the 8,930 women who received a negative result on their mammogram: 

     20 have breast cancer. 

     8,910 do not have breast cancer. 
 

Imagine another random sample of 10,000 women who had a mammogram. 

 



www.manaraa.com

27 

 

Procedure.  The experiment was hosted on Qualtrics.com™.  All data were collected 

during one-hour supervised sessions in a university computer lab equipped with 11 desktop 

computers, allowing for multiple participants in each session.  General instructions were read to 

each group of participants, with additional instructions provided on each computer to guide 

participants as they independently completed the experiment.  Participants first completed the 

Abbreviated Numeracy Scale.  After numeracy items were completed, an experimenter provided 

participants with a pencil and a blank paper form numbered 1 through 8, and entered the 

reference code from the form into the computer (for tracking purposes).  Participants then 

advanced to another instructions page that indicated the paper form should be used for any notes 

participants felt they needed to complete in the next section.   

Each participant completed the eight problems as randomly ordered in Qualtrics.com™ 

(algorithm from Matsumoto & Nishimura, 1998).  Each problem was presented by itself with the 

frequency response format question presented first.  Then they moved forward to a second screen 

to answer the PPV question using the percentage response format.  After completing the eight 

problems, participants were instructed to see the experimenter for their course credit.  At that 

time, they were given an information sheet that provided a summary about Bayesian reasoning 

and references to selected articles. 

Results  

 Analysis for Experiment 1 was completed in three parts.  First, I evaluated the 

relationship between numeracy and accuracy on Bayesian reasoning tasks.  Then, I analyzed the 

extent to which accuracy was affected by congruence and amount of information while 

controlling for differences in numerical skills.  Then, response patterns were evaluated to 
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determine the types of errors participants routinely made across the eight Bayesian reasoning 

problems.   

 Numeracy.  Numeracy was measured using the 8-item Abbreviated Numeracy Scale 

(Weller et al., 2010).  As anticipated, there was a strong positive relationship between numeracy 

and the accuracy of responses to the frequency response format of solutions provided in the 

Bayesian reasoning problems, r(234) = .44, p < .001.  Consistent with previous findings (e.g., 

Garcia-Retamero & Galesic, 2010; Peters et al., 2006; Talboy & Schneider, 2017), stronger 

numerical skills generally corresponded to higher accuracy rates on the Bayesian reasoning 

tasks.   

Congruence and amount of information.  A 2 x 2 Congruence (congruent, incongruent) 

x Information (partial subsets, full subsets) analysis of covariance was used to evaluate the 

effects of the two primary between-subjects variables on accuracy while controlling for 

differences in numeracy.  An initial check of covariance assumptions was completed to ensure 

that numeracy was not related to the independent variables of Congruence, F <1, or Information, 

F <1.   

As expected, those who read congruent problem-question pairings (Madj = 3.59) were 

more accurate than those who read incongruent problem-question pairings (Madj = 2.59) even 

after controlling for differences in numerical skill, F(1, 232) = 7.37, p = .007, 𝜂𝑝
2 = .04.  

Although this was a much smaller effect than predicted based on previous findings, this provides 

at least weak support for the congruence hypothesis, which argues that the starting point 

provided by the problem presentation influences the reasoner’s determination of the solution.   

However, there was no discernable difference in accuracy between those who read 

problems presented with partial information (Madj = 3.02) compared to full information (Madj = 
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3.16), F < 1.  Additionally, Figure 1 demonstrates that the interaction of congruence and amount 

of information was not significant, F(1, 232) = 1.50, p = .22.  Against expectations, I did not find 

support for the mental models hypothesis or the discrimination hypothesis.  Providing full 

information was expected either to increase accuracy by helping reasoners extrapolate a more 

complete mental model of the problem or to decrease accuracy by forcing reasoners to 

discriminate among additional problem values.  Within the congruent and incongruent pairings, 

though, accuracy did not appear to significantly change as a function of whether partial versus 

full information was provided.   

 

Figure 1.  Combined effects of congruence and amount of information on 

accuracy.   

Response patterns.  I also analyzed denominator response patterns for each participant 

across the eight Bayesian reasoning problems to determine if any particular problem-relevant but 

incorrect value was routinely indicated (e.g., T+, C+, N).  Consistent with the congruence 

hypothesis, previous research has shown that reasoners have a value selection bias in which they 

typically utilize the reference values provided in the problem presentation as part of their 
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response, even when calculations are required (Talboy & Schneider, 2017, 2018a).  Therefore, 

the majority of responses were expected to conform to the T+ reference class in the congruent 

pairings and the C+ reference class in the incongruent pairings, with a small portion of reasoners 

using other reference values provided in the problem such as N (i.e., the total sample).    

If participants provided four or more responses that conformed to the same value, this 

was coded as their predominant response strategy for the denominator of the frequency response 

format.  Participants who did not consistently provide the same type of response across at least 

four problems, but generally selected values from the problem text for the same answer 

component were coded as “Other Selected.”  Those who did not consistently provide the same 

type of responses and did not appear to be routinely selecting values from the problem were 

coded as “Other.” 

Based on the congruence hypothesis, the percentage of participants who consistently 

identify the correct response (i.e., at least four out of eight responses) was expected to be higher 

on congruent problem-question pairings than incongruent pairings when either partial or full 

subset information is provided (e.g., Talboy & Schneider, 2018a).  However, as shown in Figure 

2, the proportion of those who consistently identified the correct denominator value did not differ 

between congruent and incongruent problem-question pairings.1  In each group, approximately 

half of the participants were able to determine the correct value for the PPV denominator on at 

least four of the eight problems.  This finding will be evaluated in more depth in the next section. 

                                                 
1 Although the proportion of participants who consistently identified the correct denominator appeared to be similar, 

the metric used for strategy evaluation did not take differences in rates of identification into account.  Of those who 

consistently identified the correct denominator (at least 4 out of 8), the average correct was higher on both response 

components for congruent pairings (M = 6.91, SD = 1.12 for denominators and M = 6.90, SD = 1.46 for numerators) 

than incongruent pairings (M = 6.15, SD = 1.29 for denominators and M = 5.65, SD = 2.60 for numerators). 
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Figure 2.  Proportion of participants who consistently used the correct 

denominator strategy (left) or the incorrect denominator strategy (right) on the 

frequency response format.  C± denotes the total number of people who have or 

do not have the condition.  T± denotes the total number of people who test 

positive or negative.  Total N denotes the total in the superordinate set (i.e., 

sample size).   

In addition to correct responses, I was particularly interested in determining which values 

were provided when responses conformed to incorrect values.  I expected to find a substantial 

portion of participants consistently using the focal reference class (either T+ or C+ depending on 

congruence) as their denominator on the frequency response format (e.g., Talboy & Schneider, 

2018a).  However, a different pattern of response errors was observed (right, Figure 2).   

The predominant incorrect strategy was consistent with the overall sample size (N) rather 

than the conflicting reference class.  Few, if any, participants in the congruent or incongruent 

pairings consistently utilized the C+ reference class or any other provided values.  Only a 

handful of reasoners provided responses that were not present in the problem.  This pattern, 

which is virtually identical for both the full and partial information conditions, provides support 

for the value selection hypothesis in that reasoners were utilizing a prominent value from the 

problem for their denominator response.  However, the finding is inconsistent with previous 
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research that shows reasoners are typically drawn to the focal reference class more so than any 

other problem value. 

Discussion 

 In Experiment 1, I found evidence in favor of the three primary hypotheses of numeracy, 

congruence, and value selection bias.  With regard to numeracy, there was a strong positive 

relationship with accuracy on the Bayesian reasoning tasks.  As predicted by the general 

numeracy hypothesis, those with higher numerical skill were more accurate than those with 

lower numerical abilities.   

I expected a relatively large effect of congruence in which reasoners would be more 

accurate when starting from a congruent problem presentation than from one that focused on the 

incongruent reference classes.  Although accuracy was generally higher for those who read 

congruent pairings than those who read incongruent pairings, this effect was much smaller in the 

current experiment compared to previous studies (e.g., Talboy & Schneider, 2018a, 2018b).  

Additionally, the inclusion of partial versus full subset information did not appear to affect 

accuracy for either the congruent or incongruent pairings.   

The substantially reduced effect of congruence could be the result of what I thought were 

minor changes to the problem presentation.  Compared to previous problem formulations, the 

problem form used in the current studies asked reasoners to imagine another sample of the same 

size prior to reading the PPV question.  Introducing this statement could have inadvertently 

suggested to participants that the superordinate value indicating the size of that sample (N) 

should be viewed as a focal reference point, making this value much more salient than 

anticipated.  Additionally, the PPV question was simplified to reduce redundancy of indicators 

pointing to the correct reference class, which could have downplayed how important the T+ 
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value was for solution.  These changes may have eliminated any benefit that would have 

occurred when full subset information was provided compared to when only partial subset 

information was available. 

 When I evaluated response errors to determine what might be drawing attention away 

from the correct reference class, hardly any reasoners in either the congruent or incongruent 

conditions showed evidence of incorrect computations, as the vast majority utilized values that 

were presented within the problem.  Consistent with the value selection prediction, the majority 

of responses for the denominator conformed to a value presented in the problem.  However, 

reasoners were not selecting the focal reference class as predicted, but instead were 

predominantly selecting the superordinate value (N).  This indicates that reasoners were drawn 

toward using the overall sample size as their reference value rather than the expected focal 

reference class.  I suspect that the apparent change in focus from the focal reference class to the 

overall sample size altered the observed response strategies compared to those documented in 

previous studies (e.g., Talboy & Schneider, 2017, 2018a).  Nevertheless, the surprise finding 

provides confirmation of the importance of salient reference points as a primary determinant of 

answers to Bayesian reasoning problems. 
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Experiment 2 – Selection versus Calculation 

Although providing problem-question pairings with partial or full subset information 

focused on a representational issue regarding identification and application of values from the 

problem to the solution, it did little to elucidate the potential role of computation as an obstacle 

to Bayesian reasoning.  For both congruent and incongruent problem-question pairings, the first 

value needed for the pair-of-integers frequency response format (i.e., the numerator) could be 

selected directly from the problem presentation.  However, the second value (i.e., the 

denominator) had to be computed in the incongruent pairing but could be directly selected from 

the problem in the congruent pairing.  

Study 2 was designed to address this inherent confound, and further assess the extent to 

which the reference dependence hypothesis holds when calculations are required.  To do this, full 

subset information was provided within both congruent and incongruent problem presentations, 

but without reference class totals in either case.  By removing these totals, participants could no 

longer directly select and apply these values as their responses in either congruent or incongruent 

pairings.  This ensured that both types of pairings required the simple computation of adding two 

subsets, and neither had the potential for interference from an inappropriate reference class total.   

Incongruent Pairings 

Regardless of whether partial or full subset information was provided within incongruent 

pairings, reasoners had to identify and calculate the denominator of the frequency response 

format to determine the correct solution.  (This is also necessary in standard forms of Bayesian 

reasoning problems.)  This value (T+) was partitioned into two pieces of information as subsets 
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of the alternate reference classes (C+T+ and C-T+).  Therefore, reasoners had to first identify the 

two subset values correctly to then compute the total of the relevant test reference class.  

Although this is similar to what is required in the standard form of Bayesian reasoning problems, 

it is not clear in the standard form whether the difficulty associated with this step of the 

reasoning process is primarily related to recognizing which values are needed to sum to T+ or 

overcoming the pull of the incongruent reference class. 

Although results from Experiment 1 suggest that reasoners were drawn to the 

superordinate set rather than the alternate C+ reference class total, many previous studies 

indicate that reasoners routinely use the competing C+ reference class value as their preferred 

denominator (e.g., Cosmides & Tooby, 1996; Talboy & Schneider, 2018a, 2018b).  Given the 

literature (coupled with the fact that the dissertation studies were run contemporaneously), I 

predicted that when the competing C+ total is omitted from the problem presentation, two 

different response patterns could emerge, which could help disentangle issues associated with 

computational requirements from issues more closely tied to reference dependence.   

Eliminating the presence of the alternate C+ reference class totals may increase accuracy 

because I am removing a value that is hypothesized to interfere with reasoning about the correct 

nested set (e.g., Reyna, 2004; Reyna & Brainerd, 2008).  This could potentially reduce the 

tendency to adopt the inappropriate total and thereby help reasoners recognize the need to engage 

in the computational process of calculating values to reach the solution.  Though if, as in 

Experiment 1, reasoners are drawn to the superordinate set, the hypothesized increase in 

accuracy may not be as strong as originally hypothesized.   

Conversely, removal of the alternate C+ reference class totals may have little effect on 

accuracy or may result in even lower accuracy rates than in standard problem forms.  This would 
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be expected if reasoners have a strong bias toward selecting values directly from the problem 

text, rather than computing responses.  In particular, the superordinate set is the only remaining 

higher order value in the problem text that can be used as an organizational cue.  This value 

appears to draw reasoners away from the alternative C+ reference class, as demonstrated in 

Experiment 1.  As a result, removing other competing values may shift reasoners to reliance on 

the overall sample value or, if removal of the reference class creates additional uncertainty about 

how to proceed, it may push even more reasoners toward using the overall sample as their 

preferred denominator compared to the proportion observed in Experiment 1.  Therefore, if value 

selection bias is supported, there should be a sizable portion of reasoners who utilize the 

superordinate set as a frequency response component. 

This led to the competing hypotheses for incongruent pairings in Experiment 2: 

H5a) Interference reduction hypothesis: For incongruent pairings, removing 

the competing reference class totals from the problem text may result in 

higher problem solving accuracy than when reference class totals are 

provided.  If focusing on the competing reference class total is interfering 

with the problem solving process, removing the competing value should 

reduce interference, thus increasing accuracy.   

H5b) Value selection hypothesis: To the extent that the overriding response 

tendency is to select values from the problem rather than computing values 

for solution, any effects of interference reduction may be relatively small  

with response errors conforming to values presented in the problem, 

especially the value representing the superordinate set or overall sample.   
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Congruent Pairings 

Unlike incongruent problem-question pairings, previous congruent pairings did not 

require calculations for the denominator of the frequency response because the relevant reference 

class totals were provided.  In previous studies, this precluded isolation of the most important 

reason for accuracy increases.  Did accuracy improve because the problem-question pairing was 

congruent or because no calculations were required?  To address this confound, Experiment 2 

compared performance on test-focus problems that included or omitted reference class totals.  

When reference class totals are omitted, reasoners need to complete the computational step of 

adding subsets, which is equivalent to what is typically required in the incongruent pairings.   

By adding this computation step, I am able to evaluate the extent to which congruence 

affects accuracy when computational difficulty is comparable for both congruent and 

incongruent problem-question pairings.  Although I still predict that congruence will result in 

higher accuracy than incongruence even when calculations are required, I do expect a decrease in 

accuracy on the congruent pairings when there is an added step involving computation.   

This decrease in accuracy is predicted to be the result of two different mechanisms.  First, 

even for those who attempt the computation, accuracy may decrease because the arithmetic step 

may be completed incorrectly, either resulting in “quasi-Bayesian responses” (i.e., responses that 

use the correct component values but are not combined correctly; Macchi, 2000) or incorrect 

values.  With the first, there should be an increase in responses that is close to correct but 

computationally inaccurate.  With the second, accuracy could decrease due to reasoners’ bias in 

favor of selecting values over computing values (Talboy & Schneider, 2018a).  Therefore, there 

should be an increase in other values from the problem being utilized as the denominator. 
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H6) Selection and computation hypothesis: Removal of reference class totals 

in congruent pairings is expected to result in lower problem solving accuracy 

both because of (a) the required computation step adds complexity that is not 

present when the needed reference class totals are provided in the problem 

and (b) the bias to select values provided in the problem.   

Method 

 Participants.  For Experiment 2, there were 118 psychology undergraduates who were 

randomly assigned to one of two between-subjects conditions that provided either congruent or 

incongruent problems without reference class totals.  Their performance was compared to data 

from the two conditions in Experiment 1 that presented full subset information with reference 

class totals.  In all, data from 236 participants were analyzed in Experiment 2. (All conditions 

were randomly assigned at the same time.) 

 Design.  This experiment employed a 2 x 2 Congruence (congruent, incongruent) x 

Reference Class Totals (included, omitted) between-subjects design.  The primary dependent 

variable was accuracy on the PPV question in the frequency response format (___ out of ___ 

people).  All four problem-question variations utilized in this experiment included full subset 

information in either an incongruent condition-focus or a congruent test-focus presentation.   

To isolate performance issues, information about the reference class totals was either 

provided (in the congruent and incongruent full information conditions from Experiment 1) or 

omitted (newly introduced conditions of Experiment 2).  When reference class totals were 

provided, those who read congruent pairings did not need to complete any calculations to 

determine the correct denominator as the value could be selected directly from the problem.  

However, incongruent pairings required an additional computation step to determine the 
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denominator of the frequency response.  An example of how these problems appeared when 

reference class totals were included is shown in Table 4 from Experiment 1.   

When the reference class totals were omitted, both the congruent and incongruent 

pairings required the same level of computation to determine the correct solution.  An example 

of how the problems appeared when reference class totals were omitted is shown in Table 5. 

As before, the ANS was used to measure numeracy.  The procedure was identical to 

Experiment 1. 
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Table 5. Example Presentations without Reference Class Totals for the Mammography Problem 

Incongruent Condition-Focus Problem without Reference Class Totals 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 
In this sample of 10,000 women: 
 
Of those who have breast cancer: 

80 received a positive result on their mammogram. 

20 received a negative result on their mammogram. 
 

Of those who do not have breast cancer: 

990 received a positive result on their mammogram. 

8910 received a negative result on their mammogram. 

 

Imagine another random sample of 10,000 women who had a mammogram. 

  

Congruent Test-Focus Problem without Reference Class Totals 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 
In this sample of 10,000 women: 
 
Of those who received a positive result on their mammogram:  

80 have breast cancer. 

990 do not have breast cancer. 
 

Of those who received a negative result on their mammogram:  

20 have breast cancer. 

8910 do not have breast cancer. 

 

Imagine another random sample of 10,000 women who had a mammogram. 

  

Results 

Numeracy.  Numeracy was again assessed in relation to accuracy on the frequency 

response format using the Abbreviated Numeracy Scale.  As found in Experiment 1, results 

indicated a strong positive relationship between numerical abilities and accuracy on Bayesian 
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reasoning tasks, r(234) = .47, p < .001.  Again, I confirmed that stronger numerical skills are 

related to higher levels of accuracy on Bayesian reasoning tasks. 

Congruence and reference class totals.  A 2 x 2 Congruence (congruent, incongruent) x 

Reference Class Totals (included, omitted) analysis of covariance was used to assess the effects 

of the two primary between-subjects variables on accuracy while controlling for numeracy.  As 

with the first experiment, an initial check of covariance assumptions was completed and 

indicated that numeracy was not significantly different within the independent variables of 

congruence, F < 1, and reference class totals, F < 1.   

Against expectations, the main effect of congruence on accuracy was not significant 

when controlling for numeracy, F < 1.  Accuracy was comparable, and relatively low, regardless 

of whether participants viewed congruent problem-question pairings (Madj = 3.54) or incongruent 

problem-question pairings (Madj = 3.53).  Counter to previous findings, there was no evidence to 

suggest that congruence between the problems and questions increased accuracy compared to 

when incongruent pairings were provided.  Additionally, there was no main effect of reference 

class totals, mean accuracy was similar when reference class totals were provided (Madj = 3.18) 

or omitted (Madj = 3.89), F(1, 231) = 3.6, p = .06, 𝜂𝑝
2 = .02.  This is not entirely surprising as 

removal of the reference class totals from the congruent pairings was expected to decrease 

accuracy, whereas removal of reference class totals from the incongruent pairings was expected 

to increase accuracy.   

Pivotal to our hypotheses, however, was the Congruence x Reference class Total 

interaction effect.  As shown in Figure 3, this effect was not significant, F(1, 231) = 1.79, p = 

.18.  Nevertheless, given specific predictions related to the simple effects of reference class totals 
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inside of congruent and incongruent problem questions pairings, I tested these to see if there was 

any evidence of predicted effects.  

 

Figure 3.  Results for the combined effects of congruence and reference class 

totals while controlling for numeracy on adjusted means of accuracy.  Error bars 

represent ±1 SE. 

For the congruent pairings, I predicted that accuracy would be lower when reference class 

totals were omitted from versus included due to the added requirement to compute the 

denominator value.  However, there was no evidence that the presence or absence of the correct 

reference class total significantly affected accuracy in the congruent pairings, F < 1.  Generally 

speaking, it appears that reasoners were not thrown off by the need to compute as roughly the 

same proportion determined the correct denominator regardless of whether the value was 

provided directly or had to be calculated from the subset information. Nevertheless, as noted in 

Experiment 1, accuracy rates were unexpectedly low in both conditions.  Although accuracy was 

much lower than that documented in previous research (Talboy & Schneider, 2018a, 2018b), the 

lack of change in accuracy is surprising and goes against our hypothesis based on the general 
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presumption that, all else equal, reasoners perform worse on problems that require calculation 

(e.g., McDowell & Jacobs, 2017).   

Within the incongruent pairings, I expected that removing the competing reference class 

totals from the problem might increase accuracy compared to when these values were included.  

However, the extent to which interference was reduced was also predicted to be relatively small, 

and possibly compromised by added confusion about how to proceed in answering the problem 

without a value corresponding to the implied reference class.   

The simple effect of reference class totals on accuracy in the incongruent problems 

supports the interference hypothesis, albeit weakly, F(1, 231) = 5.21, p = .02, 𝜂𝑝
2 = .02.  This 

relatively small effect suggests that when reference class totals from the incorrect reference class 

are present, they may cause at least some interference misleading reasoners about which values 

are relevant to problem solution.  Evaluation of response patterns are considered next to 

elucidate which values participants were most likely to consistently provide when answering the 

PPV question, with specific attention to the value selection hypothesis. 

 Denominator response strategies.  I again assessed patterns of denominator responses 

to determine if errors could be attributed to selection of values given in the problem (and, if so, 

which ones) or incorrect computations.  As in Experiment 1, response patterns for each 

participant were evaluated to determine if responses errors consistently conformed to identifiable 

response patterns (on at least four of the eight problems).   

In both the congruent and incongruent pairings, regardless of whether the reference class 

totals were provided, a large majority of incorrect responses aligned with the superordinate set 

(N) as shown in Figure 4.  As predicted by value selection bias hypothesis, reasoners were 

latching on to the only remaining reference value provided, which was the superordinate value.  
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As shown in the two conditions discussed in Experiment 1 when reference class totals were 

provided, very few reasoners consistently used the C+ reference class, even when it was 

presumably salient in the incongruent condition.  This same pattern was also observed when no 

reference class values were provided.  Reasoners from the two new conditions in this experiment 

also appear to be selecting the overall sample size when they are not sure or cannot (or will not) 

complete the computations required to determine the correct response. 

 

Figure 4.  Proportion of participants who consistently used an incorrect 

denominator strategy on the frequency response format.  C± denotes the total 

number of people who have or do not have the condition.  Total N denotes the 

total in the superordinate set (i.e., sample size).   

Numeracy and calculations.  In this study, there was an additional numeracy prediction 

that the performance advantage for those high in numeracy would be particularly strong for 

problems that required calculation to determine the correct response compared to problems 

without computations.  The relationship between numeracy and accuracy was fairly strong on 

congruent problems that required adding two values together to determine the correct 

denominator, r(57) = .45, p < .001, as well as on those that did not require calculation, r(57) = 

.32, p = .01.  Although in the predicted direction, the difference between these two correlation 
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coefficients was not significant, z = 0.81, p = .21.  Thus, there is insufficient evidence to 

conclude that numeracy was more or less important when calculations were required to arrive at 

the correct solution compared to when the value could be selected directly from the problem, and 

that at least some level of numerical proficiency was required to determine the correct response 

in either case. 

Discussion 

 In Experiment 2, I was particularly interested in the role of calculation in solving 

Bayesian reasoning tasks.  I found additional support for the general relationship between 

numeracy and accuracy, as well as the value selection bias.  However, the primary hypothesis of 

congruence was not supported in this study.  Reasoners who read congruent problem-question 

pairings performed about the same on these tasks as those who read incongruent pairings.  

Although stronger numeracy predicted higher accuracy on Bayesian reasoning tasks, there was 

insufficient evidence to suggest numeracy was more or less important when calculations were 

required on the congruent pairings.  Further, incorrect responses from both congruent and 

incongruent pairings virtually always corresponded to values provided in the problem rather than 

computation errors.  

 As in Experiment 1, the two newly introduced conditions of Experiment 2 also showed 

that the majority of reasoners who did not determine the correct response in either the congruent 

or incongruent pairings consistently utilized the superordinate set (N) rather than any other value 

provided in the problem presentation.  In line with the value selection bias, it appears that 

removing reference class totals from the incongruent problems pushed reasoners to look for other 

salient reference values (such as N) to use as part of their solution rather than completing 

calculations.  
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Experiment 3 – Reference Dependence 

  Experiment 3 provides a new assessment of the role of reference dependence in 

Bayesian reasoning by altering the nesting of subset information.  This was done by evaluating 

performance on problems that organized the four subsets into two related reference classes (C+ 

and C- or T+ and T-) or a single superordinate set (N), or provided no explicit organizing 

information (i.e., an unlabeled nesting).  By directly manipulating the organization of the subsets 

into different types of nested structures, I can further assess the extent to which the presence or 

type of key reference values affects reasoners’ abilities to determine the PPV in Bayesian 

reasoning tasks. 

Reference Dependence 

The majority of Bayesian reasoning tasks explicitly organize the subsets of interest into 

reference classes, through both verbal and visual nesting.  Talboy and Schneider (2018a, 2018b) 

found that the majority of participants utilized the focal reference class as part of their solution 

for PPV questions, particularly on the denominator of the frequency response format.  When the 

problem-question pairings were congruent, this resulted in the correct response as the focal 

reference class from the problem (T+) was required for solution.  However, when the problem-

question pairings were incongruent, reasoners typically used the alternate C+ reference class as 

their denominator of the frequency response (Cosmides & Tooby, 1996; Galesic et al., 2009; 

Gigerenzer & Hoffrage, 1995; Gigerenzer, Hoffrage, & Kleinbölting, 1991; Talboy & Schneider, 

2017, 2018a; Wolfe, Fisher, & Reyna, 2013).   
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Reference dependence suggests that reasoners will rely on the context in which the 

subsets are organized to determine the solution to Bayesian reasoning problems.  In the problem 

formulations from Experiments 1 and 2, there were two ways reasoners were encouraged to use 

the problem structure to determine the solution to PPV questions.  First, a visual structuring 

(indentation) demonstrated how the subsets were nested within each of the indicated reference 

classes.  Second, there was a verbal organization describing which subsets belong to which 

reference classes, along with information that all of the values were drawn from the 

superordinate set.   

Results from Experiment 2 suggested that in the absence of the value for the nesting 

reference class, decision makers, especially in incongruent problems, rely on another potential 

reference class value: the superordinate set size (N).  Results from both Experiments 1 and 2 

suggest I inadvertently reinforced the superordinate set as another prominent reference point by 

adding an additional statement about this value into the problems.  When reasoners did not 

determine the correct denominator values in those two studies, the majority of them used the 

superordinate value (N) for their denominator instead of the focal reference classes from the 

problem.  In Experiment 3, I explicitly test the influence of drawing attention to the potential 

relevance of this value by introducing a problem formulation in which the visual organization 

created nesting under the superordinate set rather than the condition or test reference classes.  An 

example of superordinate set nesting is provided in Table 6.  By visually nesting all four possible 

subsets into the superordinate set, the superordinate becomes the explicit reference class within 

which the subsets are organized or nested. 
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Table 6.  Example Presentations with Superordinate Set Organization for the Mammography 

Problem 

Incongruent Condition-Focus Problem with Superordinate Set Organization 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 

 
In this sample of 10,000 women: 
 

80 have breast cancer AND received a positive result on their mammogram. 

20 have breast cancer AND received a negative result on their mammogram. 

990 do not have breast cancer AND received a positive result on their mammogram. 

8910 do not have breast cancer AND received a negative result on their mammogram. 

 

Imagine another random sample of 10,000 women who had a mammogram. 
  

Congruent Test-Focus Problem with Superordinate Set Organization 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 

In this sample of 10,000 women: 

 
80 received a positive result on their mammogram AND have breast cancer. 

990 received a positive result on their mammogram AND do not have breast cancer. 

20 received a negative result on their mammogram AND have breast cancer. 

8910 received a negative result on their mammogram AND do not have breast cancer. 

 

Imagine another random sample of 10,000 women who had a mammogram. 

  

 

If reference dependence plays a primary role in how people go about solving these 

problems, this superordinate reference point should function similarly to the condition-focus 

reference class in the standard incongruent problem-question pairing from previous research 

(e.g., Talboy & Schneider, 2018a, 2018b).  Rather than determining the correct reference class 

total of all those who test positive (T+), which is the appropriate denominator for the PPV 
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question, reasoners were expected to utilize the superordinate set as the reference class for their 

solution because it is the focal reference value presented in the problem.  Because this appeared 

to be such a focal reference point in the previous two studies, I expect that the proportion who 

use this value will be relatively large in all three problem formulations for Experiment 3, with its 

use being highest when the subsets are organized into the superordinate value. 

In this superordinate nesting, the four subsets were still organized to be congruent or 

incongruent with the PPV question, though the organization was more implicit than in previous 

manipulations.  In this case, congruence refers only to the ordering of the subsets and the 

ordering of the features within each subset statement.  For the congruent test-focus problem, the 

test result was always indicated prior to the condition.  For the incongruent condition-focus 

problem, the condition was always indicated prior to the test result.  This type of organization 

provided an internal, embedded structure that reasoners could still utilize as a reference point for 

their deliberations, although the manipulation was much more subtle. 

The implicit congruence of the problem with the PPV question becomes more important 

when all explicit reference points are eliminated from the problem presentation, as they were in 

the second novel problem formulation created for this experiment.  The second problem 

formulation removed all explicit structural reference cues such as the reference classes or 

superordinate set (except, in hindsight, for the statement about imagining another random sample 

of the same number of people).  In this problem formulation shown in Table 7, there were no 

visual or verbal nesting components that explicitly indicated how the subsets were related to one 

another.  The implicit level of congruence or incongruence was retained, though, as the four 

subsets were organized to focus on either the test result or the condition status first, with the 

sentences belonging to each congruent or incongruent reference class occurring together.  
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Although the superordinate set and reference classes could be computed based on the 

values provided if the reasoners determined they were necessary for solution, there were no other 

explicit reference values within the problem presentation that could be used as a guide.  (Note. 

The superordinate value was not present in this version of the statement asking participants to 

imagine a new random sample, so it could not be used as a guide as it might have been in other 

conditions.)  The implicit verbal ordering of the reference classes within individual descriptions 

of each subset may not be as helpful as providing an explicit anchor, but it might still be used as 

an organizational cue for solution. 

Table 7.  Example Presentations with No Explicit Organization for the Mammography Problem 

Incongruent Condition-Focus Problem with No Explicit Organization 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of women who 

had a mammogram: 
 

80 have breast cancer and received a positive result on their mammogram. 

20 have breast cancer and received a negative result on their mammogram. 

990 do not have breast cancer and received a positive result on their mammogram. 

8910 do not have breast cancer and received a negative result on their mammogram. 
 

Imagine another random sample of the same number of women who had a mammogram. 

Congruent Test-Focus Problem with No Explicit Organization 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of women who 

had a mammogram: 
 

80 received a positive result on their mammogram and have breast cancer. 

990 received a positive result on their mammogram and do not have breast cancer. 

20 received a negative result on their mammogram and have breast cancer. 

8910 received a negative result on their mammogram and do not have breast cancer. 
 

Imagine another random sample of the same number of women who had a mammogram. 

By removing the structural organization, our intention was to eliminate the reference 

class structure that intuitively led reasoners to rely on these values for solution.  (For more on the 

defining role of structural organization in problem solving, see Kotovsky & Simon, 1990; Simon, 
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1973.)  Therefore, accuracy was expected to decrease as the explicit structure on which 

uninitiated reasoners depend was removed, particularly the provision of a structural reference 

point.  Even with this anticipated decrease in accuracy, though, the congruent pairings were still 

expected to result in, at least, slightly higher accuracy than incongruent pairings because of the 

congruent statements could be more readily matched to the order of what was being asked for in 

the problem.   

H7) Reference dependence hypothesis: Accuracy will decrease when subsets 

are organized using the superordinate set compared to explicit congruent 

reference classes.  Accuracy will decrease further when no explicit reference 

point is provided.  This decrease in problem solving accuracy is expected due 

to the reduction in explicit contextual organization of the nested sets via 

provided useful/helpful reference classes. 

Value Selection Bias 

Consistent with what I found in Experiments 1 and 2, incorrect responses on the 

denominators were expected to coincide with key reference values provided in the problem 

presentations.  The value selection bias hypothesis predicts that participants are more likely to 

offer given values rather than computing values to arrive at their answer.  Taken together with 

predictions of the reference dependence hypothesis, I expected that reasoners would have a 

tendency to utilize whichever structural reference point was provided (either reference class or 

superordinate set value) as the anchor for answering the question of interest.   

With regard to use of the superordinate set, results from Experiment 1 and 2 demonstrate 

that the majority of reasoners used this value for their denominator in conditions where this value 

was readily available.  In problem structures that organized subsets into the reference classes or 
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the superordinate value, I anticipated based on the previous results that a large proportion of 

reasoners would select N as their denominator.   

When these structural reference points were removed, as they were in the third problem 

formulation, I expected reasoners’ responses to be more erratic, with selection errors being more 

common than errors involving any kind of computation. Nevertheless, I predicted some tendency 

to rely on the implicit reference structure that was used to organize the subset statements for 

determining their solution.   

Method 

 Participants.  For Experiment 3, there were 235 psychology undergraduates who were 

randomly assigned to one of four novel between-subjects conditions.  Their performance was 

compared to data from the two newly-introduced conditions in Experiment 2 that provided 

reference class organization with full subset information but no reference class totals.  In total, 

data from 353 participants were analyzed in Experiment 3. 

Design.  This experiment employed a 2 x 3 Congruence (congruent, incongruent) x 

Organization (reference classes, superordinate set, none) between-subjects design.  The 

dependent variable was average accuracy on the frequency response format for the eight 

Bayesian reasoning problems (range: 0-8 correct responses).   

Each problem variation utilized in this experiment included full subset information with 

no condition or test reference class totals in either an incongruent condition-focus or a congruent 

test-focus presentation.  In this way, all participants were required to complete computations to 

determine the correct denominator values.  Problems were either nested in reference classes or 

the superordinate set, or were not give any explicit visual nesting.  Numerical abilities were 

measured using the ANS. 
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The procedure was identical to Experiments 1 and 2. 

Results 

Numeracy.  Numeracy was again assessed using the ANS to determine the relationship 

between numeracy and accuracy on the frequency response format.  Consistent with results of 

Experiments 1 and 2, there was a strong positive relationship between numeracy and frequency 

response accuracy, r(351) = .41, p < .001.  This provides further evidence for the general 

numeracy hypothesis suggesting that at least some level of numeric proficiency is required to 

perform well on these types of tasks.   

Congruence.  A 2 x 3 Congruence x Organization (reference class, superordinate, none) 

analysis of covariance was used to analyze the effects of congruence and problem organization 

on accuracy while controlling for numeracy.  An initial check of the ANCOVA assumptions 

indicates that numeracy was not significantly different across the congruence conditions, F < 1, 

or organization conditions, F(1, 343) = 2.69, p = .07.  

As found in Experiment 2, there was no main effect of congruence on accuracy when 

controlling for numeracy, F < 1.  On average, those who read congruent problem-question 

pairings (Madj = 3.87) performed similarly to those who read incongruent problem-question 

pairings (M adj = 4.07), solving on average about half of the problems experienced.  There was no 

main effect of problem organization, F(2, 346) = 1.17, p = .31, but there was a Congruence x 

Organization interaction, F(2, 346) = 7.55, p = .001, 𝜂𝑝
2 = .04, which is shown in Figure 5. 

Simple effects analysis was completed to evaluate the effect of organization within each 

level of congruence.  For those who read congruent problem-question pairings, I expected that 

accuracy would decrease as organizational structure was decreased.  Within the congruent 

pairings (left, Figure 5), accuracy was significantly different across the three problem 
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organizations, but was not consistent with the predicted pattern, F(2, 346) = 6.92, p = .001, 𝜂𝑝
2 = 

.04.  Accuracy was comparable between the presumably helpful reference class structure and the 

presumably less helpful superordinate organization, p = .29.  Furthermore, removing all explicit 

organization actually increased accuracy compared to the reference class organization, p = .01, 

and compared to problems organized into the superordinate set, p < .001.   

 

Figure 5.  The interaction of congruence and problem organization on accuracy.  

Error bars indicate ±1 SE. 

In retrospect, this lends additional support to the interference hypothesis, which suggests 

that reasoners were latching on to a value provided in the problem presentation that drew 

attention away from the correct reference class value.  In this case, the superordinate value, 

which was provided several times in the reference class and superordinate organizations but not 

provided in the problems with no organization, may have been causing an unintended 

interference effect wherein participants were (erroneously) drawn to the superordinate value as 

the denominator for the PPV estimate. 
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For incongruent pairings, it was expected that accuracy would be low in all cases, as 

there was no problem structure that was designed to draw attention to the correct reference class.  

Within the incongruent pairings (right, Figure 5), accuracy did not differ when the problem was 

organized into the reference class structure or superordinate set, or when all explicit organization 

was removed, F(2, 346) = 1.71, p = .18.  Accuracy did not change as the confusing problem 

structure in the incongruent pairings was altered to introduce another misleading reference point 

(i.e., the superordinate value) or when the overarching reference point was removed.  This 

suggests that reasoners were not helped, nor necessarily hindered further, by changes in the 

explicit organization when starting from an (either explicit or implicit) organization that is 

incongruent with the question of interest. 

 Response patterns.  To further assess the role of organizational structure, I evaluated 

denominator responses for each participant to determine who consistently conformed to 

identifiable response patterns (on at least four of the eight problems).  Response patterns were 

coded using the same process from Experiments 1 and 2 to allow for comparison across studies.  

Reasoners who did not consistently provide the correct denominator are shown in Figure 6. 

As found in Experiments 1 and 2, the vast majority of incorrect responses conformed to 

the total sample size (N) rather than any other value provided in the problem.  Although this had 

been found in the previous studies, the finding was particularly surprising in the no explicit 

organization problems, as reasoners would have to calculate the total N value by adding together 

all four subset values.  This suggests that participants had little trouble performing the addition 

calculation of a given value if they felt that it would provide the answer needed.  Thus, the 

calculation itself is not necessarily the difficulty associated with completing (frequency) 

Bayesian reasoning tasks.  Instead, it seems that reasoners are not sure which values are needed 
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for solution.  In this case, they had a guiding statement at the end that directed attention back 

toward the overall sample size (in very generic terms), which may have been used as a cue that 

this value was needed for solution.  This is the only finding that goes against the value selection 

bias, and instead suggests that reasoners look for organization cues to determine which values 

are needed for solution.  Value selection may only become the predominant tendency when 

reasoners are confused about how to reach the solution. 

 

Figure 6.  Proportion of participants who consistently used the correct 

denominator strategy (left) or the incorrect denominator strategy (right) on the 

frequency response format.  C± denotes the total number of people who have or 

do not have the condition.  Total N denotes the total in the superordinate set (i.e., 

sample size).   

 

 

Discussion 

 In Experiment 3, I found clear evidence suggesting the importance of the structural 
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organizational cues were eliminated from the problem presentation, but not on problems that 

organized subsets into the newly-created superordinate set condition or the reference class 

conditions (without totals) from Experiment 2.  Unexpectedly, when the only reference point 

value available was the superordinate set, accuracy on incongruent pairings was typically higher 

than comparable congruent pairings. 

When reasoners were not correctly calculating the denominator value, the majority of 

them utilized the superordinate value (N) much more so than any other value across all problem 

forms.  Based on the response patterns, it appears that the superordinate value (N) was creating a 

salient reference point in the problem organizations, even when the value was not explicitly 

provided.  Instead of demonstrating a value selection bias in this case, reasoners were calculating 

the total N from the four subsets.  Numerical skill was again a strong predictor of accuracy.    
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General Discussion 

 The goal of these three experiments was to evaluate the representational and 

computational aspects of Bayesian reasoning tasks as they relate to reference dependence.  The 

most consistent and surprising finding in all three experiments was that people were much more 

likely to utilize the superordinate value as part of their solution rather than the anticipated 

reference class values.  This resulted in a weakened effect of congruence, with relatively low 

accuracy even in congruent conditions, as well as a different pattern of response errors than what 

was anticipated.  There was consistent and strong evidence of a value selection bias in that 

incorrect responses almost always conformed to values that were provided in the problem rather 

than errors related to computation. The one notable exception occurred when no organizing 

information was available in the problem, other than the instruction to consider a sample of the 

same size as that in the problem.  In that case, participants were most apt to sum all of the subsets 

of the sample to yield the size of the original sample (N). In all three experiments, higher 

numerical skills were generally associated with higher accuracy, whether calculations were 

required or not. 

Reference Dependence 

 The results of these three experiments indicate that the initial presentation of the problem 

directly informed how reasoners responded to the positive predictive value (PPV) question.  

However, the responses I observed were unexpected, and highlighted the importance of reference 

dependence in ways that were not predicted.   
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I proposed that many of the representational and computational difficulties associated 

with Bayesian reasoning tasks were due to reference dependence, or the tendency to adopt a 

given or implied reference point at the start of cognitive deliberations.  In the Bayesian reasoning 

problems used here, important reference points in the problem were specified through verbal and 

visual indicators, and I predicted that reasoners would utilize these cues to determine which 

values were key reference values needed for solution.  Although some used these reference 

values for solution, there was another aspect of the problem formulations used in the current 

studies that may have unintentionally pulled attention to a different reference point, the 

superordinate value (N). 

Previous studies have reported similar accuracy rates whether the estimates provided in 

the Bayesian reasoning problems referred to the initial sample (e.g., Sirota et al., 2014) or to a 

new representative sample of the same size (e.g., Gigerenzer & Hoffrage, 1995).  A large-scale 

meta-analysis evaluated problem forms that explicitly stated a superordinate value in the problem 

description (but not necessarily that the problem values should be applied to a new sample of the 

same size) and found that having this information available did not improve performance 

(McDowell & Jacobs, 2017).  Thus, I did not expect to observe an impact of describing the 

solution needed in terms of a new sample.   

However, in hindsight, I realize that accuracy on those problems was consistently low, as 

all previous studies used the incongruent problem-question pairings.  The lack of a discernible 

difference from introducing a new sample could be the result of a floor effect.  Moreover, 

because the pattern of errors were not typically reported, I cannot differentiate whether accuracy 

was generally low because reasoners were using the superordinate value when it was salient, or 

because they were latching on to the incongruent reference class from the problem. 
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In the current studies, the superordinate value was emphasized in the problem and the 

question throughout all of the problem presentations except for the problem form in Experiment 

3 that provided no explicit organizational structure.  Even there, the reference to imagining a new 

sample of the same size likely served as a potent cue to find that value.  Thus, the majority of 

incorrect denominator responses in both congruent and incongruent problem-question pairings 

conformed to the superordinate value rather than any other predicted value.  Even in the simplest 

form of the congruent problem-question pairings tested in Experiment 1 (which was meant to be 

a replication of Talboy and Schneider, 2018a), where the correct denominator value could be 

directly selected from the problem, the focus on the superordinate value provided enough pull 

that accuracy was only around 50% rather than at the expected 80% mark.   

By drawing attention to the superordinate value in the question being asked of 

participants, I apparently made this one of the, if not the most, salient reference point.  The 

dependence on this reference point rivaled the strength of the correct reference point that was 

included in the congruent problems.  In the incongruent problems, it was even stronger than the 

incorrect reference class within which the subsets were nested.  In all experiments, it was almost 

the only other value suggested for the denominator other than the correct value.  An additional 

study is currently underway to confirm that the instruction to consider a new sample of the same 

size can account for the superordinate value becoming a focal reference point, leading to these 

differences in accuracy and changes in the denominator response strategies between the current 

and past experiments.  Regardless, the unexpected reliance on this reference point lends support 

to the larger hypothesis that reference dependence plays a large role in performance on Bayesian 

reasoning tasks. 
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Congruent Problem Structuring 

 In addition to the verbal and visual cues indicating potential reference points, the overall 

structure of the problem can either guide reasoners to the correct values needed for solution (in a 

congruent pairing) or cause confusion about which values should be used in the answer (in an 

incongruent pairing).  The congruent format was expected to increase accuracy because the 

reference values that were highlighted in the problem structure through verbal and visual cues 

aligned with the question of interest (Talboy & Schneider, 2018a, 2018b).  Alternatively, the 

incongruent format was expected to cause confusion because the reference values were not 

consistent with those needed to find the correct solution.   

However, the effect of congruence was weak in these studies compared to previous 

research (e.g., Talboy & Schneider, 2018a, 2018b).  Further, the congruence effect was reversed 

in Experiment 3 when the problems were organized into the superordinate set, resulting in higher 

accuracy on the incongruent pairing rather than the congruent pairing.  The weak effect of 

congruence (and possibly the reversed effect) is likely the result of unintentionally focusing 

attention on the superordinate (N) value rather than the reference classes.  If so, this also 

highlights the importance of the problem and question structuring, and in particular, signaling the 

implied reference point of interest for obtaining the solution. 

 When all explicit organization is removed and reasoners are left with the four subsets 

subtly organized in a congruent or incongruent manner, the congruent pairings resulted in higher 

accuracy than incongruent pairings.  In this case, the superordinate value was no longer directly 

highlighted as a reference point at the beginning and end of the problem, though attention was 

still drawn to the overall sample size in very generic terms without a numeric value assigned to 

it.  It appears that removing the numeric indicator of the superordinate value may have reduced 
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interference and increased accuracy, but that even a non-numeric focus on this organizational cue 

may still have limited accurate identification of the correct reference class.  This is consistent 

with the finding that the total sample size was by far the most common error in this condition 

even though participants had to add all four given values to produce this answer.   

Even though the effect of congruence in the above condition was relatively small, the 

manipulation of congruence when explicit organization was removed was much subtler 

compared to previous studies.  Rather than being a means to explain the alignment between 

verbal and visual indicators of the reference classes in the problem and those needed for solution, 

congruence in Experiment 3 referred to the ordering of the problem statements to focus on the 

test result or condition presence first.  Structurally, the explicit reference points were eliminated 

as all four subsets were presented in a single block rather than broken out into visually and 

verbally defined reference classes.  Therefore, it is not surprising to find this effect is much 

smaller than in studies in which reference points were structurally signaled. 

Amount of information.  Reasoners create mental representations of the problem 

structure based almost exclusively on the information that is provided (Johnson-Laird, 1994; 

Kintsch & Greeno, 1985; Sirota, Juanchich, et al., 2014).  In accordance with the mental models 

approach, I hypothesized that giving reasoners full subset information would result in higher 

accuracy than when only partial information is provided.  However, I also introduced an 

alternative discrimination hypothesis, that including additional subset information could result in 

lower accuracy because reasoners would have greater difficulty discriminating among a larger 

set of values.   

Against expectations, though, inclusion of partial versus full information in the problem 

presentation did not have any discernible effect on accuracy, regardless of congruence between 
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the problem and question of interest.  In each case, performance on the congruent pairing was 

moderate, with performance on the incongruent pairings relatively low as has been found in any 

number of previous studies (e.g., Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, & Woloshin, 

2007; Gigerenzer & Hoffrage, 1995; Hoffrage, Krauss, Martignon, & Gigerenzer, 2015; Johnson 

& Tubau, 2015; Reyna & Brainerd, 2008; Sirota, Kostovičová, & Vallée-Tourangeau, 2015).   

The lack of a difference in accuracy with full information suggests that including the two 

non-essential subsets did not help reasoners figure out how to find the solution. It also did not 

hurt their ability. However, the unexpected focus on the superordinate value (N), which then 

became a salient reference point, may have overshadowed any possible effect of being given full 

subset information versus partial information.  A future study could reassess whether the 

inclusion of full subset information alters accuracy without the distraction of a second salient 

reference point.  

Removing interference from misleading reference points.  Unlike the full versus 

partial information manipulation, changing or removing focal reference values from the problem 

had a differential effect on accuracy for reasoners who read incongruent or congruent pairings.   

  Within the incongruent pairings, focal reference points that organized information in a 

way that did not draw attention to the correct solution were expected to cause an interference 

effect that reasoners would need to overcome in order to accurately solve the problem.  Evidence 

for this was seen in the congruence effect observed in Experiment 1.  In Experiment 2, when the 

competing C+ reference class was the nesting structure but the values were removed, accuracy 

increased, though only by a small amount.  So, there seemed to be a slight release from 

interference, but the error analysis suggested that this was countered by the tendency for 

reasoners to be drawn to the N value.  Further, in Experiment 3 when the explicit structure was 
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eliminated, a large portion of reasoners were consistently calculating the total sample (N) instead 

of the correct T+ reference value.  This suggests that the incongruent problem presentation did 

not clearly elucidate which reference value was needed for the PPV question, even after 

competing values were eliminated from the problem description.   

Additional evidence for the interference hypothesis was unexpectedly found with 

structural changes to the congruent problem-question pairings.  When all organizational cues and 

totals were eliminated from the problem presentations in Experiment 3, those who read sentences 

with a congruent ordering performed substantively better than when subsets were nested within 

test reference classes or the superordinate set (N).  The unstructured condition was the only 

problem in which the total sample N value was not provided anywhere in the problem.  This 

finding suggests that the presence of the N value must have been interfering with the ability to 

take advantage of the correct nested structure.  This goes back to the general presumption that 

the reference class values would be the most salient reference point in the problem presentation, 

and that congruence would help reasoners organize the subset information into a structure that 

leads directly to the solution.  Instead, by focusing on the superordinate (N) value in the 

question, I likely introduced an interference effect in the congruent pairings that was not 

anticipated.  This suggests the importance of ruling out additional salient reference points within 

the problem as well as the question being asked. 

Value Selection Bias 

 In addition to the primary findings regarding reference dependence and congruence, I 

also investigated the general bias toward selecting values from the problem rather than 

completing calculations when reasoners were unsure of how to determine the solution.  In each 

experiment, virtually all reasoners who did not determine the correct response utilized values 
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directly from the problem to fill in each component of their solution.  Hardly any reasoners made 

responses that were consistent with calculation errors.  This provided strong support for the value 

selection bias (while also confirming the strong draw to the superordinate set value as the 

denominator). 

 When reasoners are not familiar with the type of problem that has to be solved, they tend 

to rely on surface features to guide their solution (Chi, Feltovich, et al., 1981; Chi, Glaser, et al., 

1981; Owen & Sweller, 1989; Swanson & Beebe-Frankenberger, 2004; Winner et al., 1980).  

This tendency may reflect a lack of willingness to engage the mental resources needed to fully 

flesh out the problem space (e.g., "the lazy controller," Kahneman, 2011), which results in 

responses consistent with the identifiable problem values rather than calculation mistakes.  This 

bias may also reflect a general belief that relevant values should be readily available in the 

problem description, and so calculations should not be needed (Talboy & Schneider, 2018a).  I 

consistently observed this value selection bias as the default response strategy when reasoners 

did not determine the correct response in all three experiments.  This highlights the need to 

identify and develop methods for overcoming the tendency to select values in order to better 

assess what steps are actually needed to get to the correct solution. 

However, in Experiment 3 when no explicit organization was provided, the majority of 

reasoners provided responses that were consistent with the superordinate value even though this 

number was not explicitly provided in the problem description.  In this case, it appears that 

reasoners were (successfully) calculating the total sample size from the four subsets provided.  

This suggests that reasoners were using cues from the problem presentation, such as the final 

statement about considering a new sample of the same size, to determine which values they 

thought were needed in the response. 
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Calculations 

Much of the existing literature suggests that computational difficulties make Bayesian 

reasoning tasks inherently difficult, particularly for those with low numerical skill compared to 

those with higher numeracy (Chapman & Liu, 2009; Reyna & Brainerd, 2008; Schwartz, 

Woloshin, Black, & Welch, 1997; Talboy & Schneider, 2018b).  Further, even though some 

argue that this basic addition operation is simple (Johnson-Laird, Legrenzi, Girotto, Legrenzi, & 

Caverni, 1999; Sloman et al., 2003), there is substantial evidence that many reasoners are unable 

to complete this simple step to correctly solve the problem (Johnson & Tubau, 2015; Mayer, 

2003; Reyna & Brainerd, 2008; cf. Schneider & Talboy, in progress).  However, the difficulty is 

not necessarily with the calculation itself, but with determining the relationship between different 

subsets. 

In problem solving, computation involves determining what is needed for solution, 

selecting the relevant values from the problem description, and then applying the correct values 

toward the solution (Schneider & Talboy, under review; Talboy & Schneider, 2018a).  In this 

process, reasoners are expected to have an existing body of knowledge that helps them recognize 

which mathematical operation is appropriate for the question of interest.  This also requires 

analytic abilities to correctly interpret the meaning of values provided in the problem.  Although 

I did not attempt to evaluate each step required in computation, I did want to isolate the issues 

directly related to calculating the correct denominator (i.e., adding two values together). 

Separating out the issue of adding the two relevant subsets together from the larger 

problem structuring issue was accomplished in Experiment 2.  Responses of reasoners who read 

congruent problem-question pairings in which the denominator could be selected directly from 

the problem were compared to responses of those who read congruent problems in which the 
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denominator had to be calculated by adding two subsets together.  To our surprise, there was no 

evidence to suggest that the added calculation step increased the difficulty of solving the 

congruent problem-question pairing.  Further, in Experiment 3, when reasoners were not 

provided any organizing value, a large portion of reasoners who read congruent or incongruent 

pairings actually calculated the superordinate value more often than any other value.  This 

suggests that reasoners can and do complete simple calculations when they are given statement 

cues suggesting these are important values (such as the statement at the end of the problem 

telling them to consider another sample of the same size). 

 The lack of a discernible difference in accuracy in the congruent pairings, regardless of 

whether calculations were required or not, suggests that a simple addition step is not what is 

inhibiting accuracy on these nested set problems.  Instead, when reasoners are starting from a 

problem that flows directly to the solution, the added calculation step may be viewed as a 

nominal change that reasoners readily take on to correctly answer the question, but only when 

starting from a problem structure that leads directly to the correct (or at least an obvious) solution 

(see also, Schneider & Talboy, in progress).  If the difficulty reasoners have is not the actual step 

of adding values together, this suggests that the breakdown occurs in one of the other 

prerequisites for computation (Schneider & Talboy, under review; Talboy & Schneider, 2018a) 

or in the general process of understanding how nested subsets function in relation to one another. 
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Conclusion 

 The purpose of the current research was to evaluate the effect of reference dependence 

within Bayesian reasoning, and the extent to which reference dependence accounts for many of 

the representational and computational difficulties associated with Bayesian reasoning tasks.  

What may appear to be simple changes in how reasoning problems are presented can actually 

fundamentally alter the way reasoners interpret and utilize problem information to determine 

solutions.  When reasoners are not sure what they need to determine the correct response, they 

tend to utilize the values provided directly in the problem presentation.  Which value they choose 

will critically depend on the reference points they identify based on the problem structure and the 

way the question is asked.  When calculation is needed, the calculation step of summing values 

does not in itself appear to be a hindrance to accuracy when reasoners are starting from a 

problem presentation that maps directly to the question of interest. This again suggests the issue 

is knowing which values are relevant and how to organize those values cognitively in order to 

arrive at the correct solution.  
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Appendix A: Experimental Conditions Map 

Map of conditions across the three experiments. 
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Appendix B: Example Bayesian Reasoning Problems 

Example Problem Forms for Experiment 1 

Incongruent Condition-Focus Problem – Partial Detail 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 

In this sample of 10,000 women, 100 have breast cancer. 

 
Of the 100 women who have breast cancer: 

     80 received a positive result on their mammogram. 

 
Of the 9,900 women who do not have breast cancer: 

     990 received a positive result on their mammogram. 

  

Imagine another random sample of 10,000 women who had a mammogram. 

 

Congruent Test-Focus Problem – Partial Detail 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 

In this sample of 10,000 women, 1,070 received a positive result on their mammogram. 

 
Of the 1,070 women who received a positive result on their mammogram: 

     80 have breast cancer. 

 
Of the 8,930 women who received a negative result on their mammogram: 

     20 have breast cancer. 

  

Imagine another random sample of 10,000 women who had a mammogram. 
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Incongruent Condition-Focus Problem – Full Detail 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 

In this sample of 10,000 women, 100 have breast cancer. 

 
Of the 100 women who have breast cancer: 

     80 received a positive result on their mammogram. 

     20 received a negative result on their mammogram. 

 
Of the 9,900 women who do not have breast cancer: 

     990 received a positive result on their mammogram. 

     8910 received a negative result on their mammogram. 

 

Imagine another random sample of 10,000 women who had a mammogram. 

  

Congruent Test-Focus Problem – Full Detail 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 
 

In this sample of 10,000 women, 1,070 received a positive result on their mammogram. 

 
Of the 1,070 women who received a positive result on their mammogram: 

     80 have breast cancer. 

     990 do not have breast cancer. 

 
Of the 8,930 women who received a negative result on their mammogram: 

     20 have breast cancer. 

     8,910 do not have breast cancer. 

 

Imagine another random sample of 10,000 women who had a mammogram. 
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Example Problem Forms for Experiment 2 

Incongruent Condition-Focus Problem without Reference Class Totals 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 

 
In this sample of 10,000 women: 

 
Of those who have breast cancer: 

80 received a positive result on their mammogram. 

20 received a negative result on their mammogram. 

 
Of those who do not have breast cancer: 

990 received a positive result on their mammogram. 

8910 received a negative result on their mammogram. 

 

Imagine another random sample of 10,000 women who had a mammogram. 

  

Congruent Test-Focus Problem without Reference Class Totals 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 

 
In this sample of 10,000 women: 

 
Of those who received a positive result on their mammogram:  

80 have breast cancer. 

990 do not have breast cancer. 

 
Of those who received a negative result on their mammogram:  

20 have breast cancer. 

8910 do not have breast cancer. 

 

Imagine another random sample of 10,000 women who had a mammogram. 
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Example Problem Forms for Experiment 3 

Incongruent Condition-Focus Problem with Superordinate Set Organization 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 

 
In this sample of 10,000 women: 

 
80 have breast cancer AND received a positive result on their mammogram. 

20 have breast cancer AND received a negative result on their mammogram. 

990 do not have breast cancer AND received a positive result on their mammogram. 

8910 do not have breast cancer AND received a negative result on their mammogram. 

 

Imagine another random sample of 10,000 women who had a mammogram. 

  

Congruent Test-Focus Problem with Superordinate Set Organization 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of 10,000 

women who had a mammogram: 

 
In this sample of 10,000 women: 

 
80 received a positive result on their mammogram AND have breast cancer. 

990 received a positive result on their mammogram AND do not have breast cancer. 

20 received a negative result on their mammogram AND have breast cancer. 

8910 received a negative result on their mammogram AND do not have breast cancer. 

 

Imagine another random sample of 10,000 women who had a mammogram. 
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Incongruent Condition-Focus Problem with No Explicit Organization 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of women who 

had a mammogram: 

 
80 have breast cancer AND received a positive result on their mammogram. 

20 have breast cancer AND received a negative result on their mammogram. 

990 do not have breast cancer AND received a positive result on their mammogram. 

8910 do not have breast cancer AND received a negative result on their mammogram. 

 

Imagine another random sample of the same number of women who had a mammogram. 

 

Congruent Test-Focus Problem with No Explicit Organization 

To determine whether a woman is at risk of breast cancer, doctors conduct mammogram 

screenings.  Sometimes women test positive even when they should test negative or test negative 

when they should test positive.  Here is some information for a random sample of women who 

had a mammogram: 

 
80 received a positive result on their mammogram AND have breast cancer. 

990 received a positive result on their mammogram AND do not have breast cancer. 

20 received a negative result on their mammogram AND have breast cancer. 

8910 received a negative result on their mammogram AND do not have breast cancer. 

 

Imagine another random sample of the same number of women who had a mammogram. 

  

 

  



www.manaraa.com

86 

 

 

 

 

 

 

Appendix C: Institutional Review Board Approval and Informed Consent 

 

 

 

  



www.manaraa.com

87 

 

  



www.manaraa.com

88 

 

INFORMED CONSENT 
 

First, I’m going to explain to you what your participation in this study entails 
and then ask if you want to participate.  Keep in mind that you do not have 
to participate if you don’t want to. The name of the PI is Alaina Talboy. The 
USF IRB number for this research is Pro20889. This study will take 
approximately 60 minutes, and completion of the study will earn you 2 
points. If you decide to withdraw or you are excused by the experimenter, 
points will be awarded based upon the time you spent in the study.  You 
also have the option of completing a different study listed on SONA to earn 
2 points. 
  
Today you will be participating in a study at the University of South Florida 
that is concerned with how well people understand information about risks. 
In this study, you will be randomly assigned to one of several conditions.  In 
each condition, you are going to be presented a series of general questions 
about aspects of your numerical and graphical abilities. You will then be 
asked a series of questions that concern potential real-life situations 
involving risk. We want to know how you evaluate the risks in those 
situations.  You may also be asked to provide general demographic 
information. 
  
Your name will not be associated with any of your study responses.  In fact, 
we will not be asking for written consent, but we will need verbal consent 
from you.  In this way, your privacy and research records will be kept 
confidential to the extent of the law.  Authorized research personnel, 
employees of the Department of Health and Human Services, the USF 
Institutional Review Board and its staff, and any other individuals acting on 
behalf of USF, may inspect the records from this research project. The 
records will be anonymous. 
  
It is possible, although unlikely, that unauthorized individuals could gain 
access to your responses. Confidentiality will be maintained to the degree 
permitted by the technology used. No guarantees can be made regarding 
the interception of data sent via the Internet. However, your participation in 
this online survey involves risks similar to a person’s everyday use of the 
Internet. If you complete and submit an anonymous survey and later 
request your data be withdrawn, this may or may not be possible as the 
researcher will be unable to extract anonymous data from the database. 
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The results of this study may be published.  Your data will be combined 
with data from others in the publication. The published results will not 
include your name or any other information that would personally identify 
you in any way. 
  
This project presents no risk or harm to you, and there are no anticipated 
benefits to you. If you have any questions or concerns regarding the 
research, a written copy of this verbal agreement along with contact 
information for the principal investigator and the IRB office can be provided 
to you at your request. 
  
Your participation in this experiment is entirely voluntary, and you may 
leave at any time should you feel uncomfortable with the procedures. Your 
decision to participate or not to participate will not affect your status or 
course grade. 
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